
CMSC 330: Organization of Programming
Languages

Box Smart Pointer, Trait Objects, Interior
Mutability

Copyright © 2018-2024 Michael Hicks, the University of
Maryland, and Michael Coblenz, UC San Diego. Some
material based on https://doc.rust-lang.org/book/
second-edition/index.html

Box<T> Smart Pointers

• Box<T> values point to heap-allocated data
– The Box<T> value (the pointer) is on the stack, while its pointed-

to T value is allocated on the heap
– Has Deref trait – can be treated like a reference

• More later

– Has Drop trait – will drop its data when it dies

• Uses?
– Reduce copying (via an ownership move)
– Create dynamically sized objects

• Particularly useful for recursive types

• Naïve attempt doesn’t work
– Compiler complains that it

can’t know the size of List
– The Cons case is “inlined”

into the enum

Example: Linked List

enum List {
 Nil,
 Cons(i32,List)
}

• Since a List is recursive, it could be basically any size
• Use a Box to add an indirection

– Now the size is fixed
• i32 + size of pointer

– Nil tag smaller

enum List {
 Nil,
 Cons(i32,Box<List>)
}

Creating a LinkedList
enum List {
 Nil,
 Cons(i32,Box<List>)
}

use List::{Cons, Nil};

fn main() {
 let list = Cons(1,
 Box::new(Cons(2,
 Box::new(Nil))));
 … // data dropped at end of scope
}

Deref Trait

• If x is an int then &x is a &{int}
– Can use * operator to dereference it, extracting the underlying

value
• *(&x) == x

• Can use * on Box<T> types
– Deref trait requires deref(&self) -> &T method
– So that *x translates to *(x.deref())

• deref returns type &T and not T so as not to relinquish
ownership from inside the Box type

Deref Coercion

• The Rust compiler automatically inserts one or more calls to
x.deref() to get the right type
– When &T required but value x : U provided, where U implements
Deref trait

– In particular, at function and method calls

• Also a DerefMut trait, for when object is mutable
– Deref coercion works with this too (see Rust book)

Example

– &m should have type &str to pass it to hello
– So, compiler calls m.deref() to get &String, and then
deref() again to get &str

fn hello(x:&str) {
 println!("hello {}",x);
}
fn main() {
 let m = Box::new(String::from("Rust"));
 hello(&m); //same as hello(&(*m)[..]);
}

Drop Trait

• Provides the method fn drop(&mut self)
– Called when the value implementing the trait goes out of scope
– Should be used to free the underlying resources, e.g., heap

memory

• May not call drop method manually
– Would lead to a double free when Rust calls the method again at

the end of a scope
– Can call std::mem::drop function in some circumstances

Size Matters

9

pub trait Summarizable {
 fn summary(&self) -> String {
 String::from(“none”)
 }
}

impl Summarizable for i32 {…}

• Recall Summarizable

• Let’s make a general summary-printing function
• First attempt: fn print_summary(s: Summarizable) {…}

– This means the caller moves (or copies, if s is Copy) the argument to the
function when calling it (s is not a reference)

– This means the data in the argument needs to be moved/copied
– How many bytes long is the data? Don’t know; won’t work

Still Not Right

10

pub trait Summarizable {
 fn summary(&self) -> String {
 String::from(“none”)
 }
}

impl Summarizable for i32 {…}

• Recall Summarizable

• Second attempt, also wrong:
fn print_summary(s: &Summarizable) {
 print!(”{}”, s.summary());
}

– There are lots of implementations of summary
– Which one should be invoked?

What’s Missing: Receiver Type

• This code was OK; why?
	 let x:i32 = 42;
	 x.summarize();

• The compiler knows which summarize to call, since it
knows x:i32

11

Dynamic Dispatch
fn print_summary(s: &Summarizable) {
 print!(”{}”, s.summary());
}

• Object oriented languages, like Java, accept code like the
above because they have dynamic dispatch
– The correct method is determined at run time

• To implement dispatch in Rust, we use trait objects
• A trait object pairs data with runtime type information

– Think: (42, “I am an i32!”)

12

Trait Objects

• Use type dyn Summarizable, wrapped in a Box

• Callers simply use Box to put the data on the heap

13

fn print_summarizable(s: Box<dyn Summarizable>) {
 println!("{}", s.summary());
}

pub fn main() {
 let b = Box::new(42);
 print_summarizable(b);
}

Why the Box?
• Could we do this instead?

fn print_s(s: dyn Summarizable) {
 println!("{}", s.summary());
}

• Error!

Lesson: dyn Summarizable has different sizes; Box<T> has one

14

17 | fn print_s(s: dyn Summarizable) {
 | ^ doesn't have a size known at compile-time
 |
 = help: the trait `Sized` is not implemented for `(dyn
Summarizable + 'static)`
help: function arguments must have a statically known size,
borrowed types always have a known size

Box and Size

• Box<i32> is a pointer to a heap-allocated i32
• Box<dyn Summarizable> is a fat pointer to a heap-

allocated Summarizable
– That is: (type information, pointer to data on the heap)

 struct Enormous { // 512 bytes (4 * 128)
 a: [i32; 128],
 }

 impl Summarizable for Enormous {…}

15

512
8
Error

println!("{}", std::mem::size_of::<Enormous>());
println!("{}", std::mem::size_of::<Box<Enormous>>());
println!("{}", std::mem::size_of::<Box<Summarizable>>());
println!("{}", std::mem::size_of::<Box<dyn Summarizable>>()); 16

Example

Box: a Kind of Smart Pointer

• A smart pointer is a reference plus metadata, to provide
additional capabilities
– Originated in C++
– Examples seen so far: String, Vec<T>, Box<T>

• Usually implemented as structs
– Which must implement the Deref and Drop traits

• New ones we will see: Cell<T>, Rc<T>, Ref<T>, …

• Check out The Rustonomicon for how to implement your
own smart pointers!
– https://doc.rust-lang.org/stable/nomicon/

https://doc.rust-lang.org/stable/nomicon/

Summary

• Use Box<T> to heap-allocate data, and reduce copying (via
an ownership move)
– Useful for non cyclic, immutable data structures

• Use trait objects, of type Box<dyn Trait>, to implement
dynamic dispatch
– For any trait type Trait
– Box lets you use fat pointers for dyn trait objects, to provide

runtime type information to enable dynamic dispatch
– If you try to pass traits without Box, you may get errors about
Sized because the compiler doesn’t know how big things are

17

INTERIOR MUTABILITY

Rust Ownership and Mutation

• Recall Rust ownership rules
– Each value in Rust has a variable that’s called its owner; there can be

only one
– When the owner goes out of scope, the value will be dropped

• Recall Rust mutability rules
– Mutation can occur only through mutable variables (e.g., the owner) or

references
– Rust permits only one borrowed mutable reference (and no immutable

ones at the same time)

19

But: Having both mutation and sharing is useful

• Example: a simple spreadsheet
 struct CellStyle { fontSize: f64 }
 struct Cell { style: CellStyle }
 struct Table { cells: [Cell; 128] }

– So: a Table owns its Cells

• But: a format inspector needs to read and write the
cell data

– Ensuring only one borrowed mutable reference would
be awkward

– Easier if the inspector has its own reference

20

Another Example

• Suppose you have a multiplayer chess game
– Local data structures record the board state
– Maybe the board is owned by the window that contains it

• What happens when a new move comes in from the network?
– That’s handled by a different software component, not the window

• Simplest design is to have multiple (mutable) references to the board
– But Rust doesn't allow that

21

Relaxing Rust's Restrictions

• Architecturally, designating one owner that all accesses must go
through can be awkward

– We might end up wanting shared mutable access to the owner!

• Rust provides APIs by which you can get around the compiler-
enforced restrictions against multiple mutable references

– Use reference counting to manage lifetimes safely
– Track borrows at run-time to overcome limited compiler analysis
– Discipline is called interior mutability
– But: extra checks at space and time overhead; some previous compile-

time failures now occur at run-time

22

Multiple Pointers to a Value
• What’s wrong with this code?

– Box::new takes ownership of its argument, so the second
Box::new(a) call fails since a is no longer the owner

• How to allow something like this code?
– Problem: Managing lifetime

23

fn main() {
 let a = Cons(5,
 Box::new(Cons(10,
 Box::new(Nil))));
 let b = Cons(3, Box::new(a));
 let c = Cons(4, Box::new(a));//fails
}

enum List {
 Nil,
 Cons(i32,Box<List>)
}

Managing Lifetimes Dynamically

• Benefit of ownership: compiler knows when to free memory
 {
 let nil_box = Box::new(List::Nil);
 // free memory HERE (nil_box is going out of scope)
 }

• Suppose Box didn't own its data:
 let nil_box = Box::new(List::Nil);
 let one_list = List::Cons(1, nil_box);
 {
 let two_list = List::Cons(2, nil_box);
 // two_list is going out of scope; free nil_box too?
 }

• (Box does own its data so the above pattern is not allowed.)

24

enum List {
 Nil,
 Cons(i32,Box<List>)
}

error[E0382]: use of
moved value: `nil_box`

Rc<T>: Multiple Owners, Dynamically

• This is a smart pointer that associates a counter with the underlying
reference

• Calling clone copies the pointer, not the pointed-to data, and bumps
the counter by one

– By convention, call Rc::clone(&a) rather than a.clone(), as a
visual marker for future performance debugging

• In general, calls to x.clone() are possible issues

• Calling drop reduces the counter by one
• When the counter hits zero, the data is freed

25

Rc::clone “Shares” Ownership

• Rc associates a refCount with the value

• let x = Rc::new(42);
• let y = Rc::clone(x);
• let z = Rc::clone(x);

26

42
valrefCount

stack (for example) heap
does heap allocation, like Box::new, but uses reference counting

clone() increments reference count

clone() increments reference count

123

Lists with Sharing

27

enum List {
 Nil,
 Cons(i32,Rc<List>)
}

use List::{Cons, Nil};

fn main() {
 let a = Rc::new(Cons(5,
 Rc::new(Cons(10,
 Rc::new(Nil)))));
 let b = Cons(3, Rc::clone(&a));
 let c = Cons(4, Rc::clone(&a));//ok
}

Nb. Rc::strong_count returns the current ref count

Reference Counting: Summary

• To create: let r = Rc::new(...);
• To copy a pointer: let s = Rc::clone(&r);

– Increments the reference count
• To move a reference: let t = s;

– Does not increment reference count; s no longer the owner
• To free is automatic: drop is called when variables go out of scope,

reducing the count; freed when 0

• See docs:
– https://doc.rust-lang.org/book/ch15-04-rc.html
– https://doc.rust-lang.org/std/rc/index.html

28

https://doc.rust-lang.org/book/ch15-04-rc.html
https://doc.rust-lang.org/std/rc/index.html

Quiz 1
fn print_refcount(r: Rc<i32>) {
 println!("{}", Rc::strong_count(&r));
}

fn main() {
 let forty_two = Rc::new(42);
 print_refcount(forty_two);
 {
 let v = Rc::clone(&forty_two);
 print_refcount(v); // What does this print?
 }
}

29

A. 0
B. 1
C. 2
D. This code doesn't compile

Quiz 1
fn print_refcount(r: Rc<i32>) {
 println!("{}", Rc::strong_count(&r));
}

fn main() {
 let forty_two = Rc::new(42);
 print_refcount(forty_two);
 {
 let v = Rc::clone(&forty_two);
 print_refcount(v); // What does this print?
 }
}

30

A. 0
B. 1
C. 2
D. This code doesn't compile

error[E0382]: borrow of moved value: `forty_two`
 --> src/main.rs:11:27
 |
8 | let forty_two = Rc::new(42);
 | --------- move occurs because `forty_two` has type `Rc<i32>`, which does not
implement the `Copy` trait
9 | print_refcount(forty_two);
 | --------- value moved here
10 | {
11 | let v = Rc::clone(&forty_two);
 | ^^^^^^^^^^ value borrowed here after move

Quiz 2
fn print_refcount(r: &Rc<i32>) {
 println!("{}", Rc::strong_count(r));
}

fn main() {
 let forty_two = Rc::new(42);
 {
 let v = Rc::clone(&forty_two);
 }
 print_refcount(&forty_two); // What does this print?
}

31

A. 0
B. 1
C. 2
D. This code doesn't compile

Quiz 2
fn print_refcount(r: &Rc<i32>) {
 println!("{}", Rc::strong_count(r));
}

fn main() {
 let forty_two = Rc::new(42);
 {
 let v = Rc::clone(&forty_two);
 }
 print_refcount(&forty_two); // What does this print?
}

32

A. 0
B. 1
C. 2
D. This code doesn't compile

v went out of scope, so the reference count is 1 (once again).

Risks of Reference Counts

• Cyclic data is problematic
– Suppose the arrows are Rc references

– Reference counts are always positive; will never be deallocated!

• Can fix by using weak references (see docs)
• App must be prepared for referent to be revoked
• These are not required for the assignment

33

Rc References: Mutation?

• Attempt 1:
 let mut b = Rc::new(42);
 *b = 43;

34

warning: variable does not need to be mutable
 --> src/main.rs:4:9
 |
4 | let mut b = Rc::new(42);
 | ----^
 | |
 | help: remove this `mut`
 |
 = note: `#[warn(unused_mut)]` on by default

error[E0594]: cannot assign to data in an `Rc`
 --> src/main.rs:5:5
 |
5 | *b = 43;
 | ^^^^^^^ cannot assign
 |
 = help: trait `DerefMut` is required to modify through a dereference,
but it is not implemented for `Rc<i32>`

https://doc.rust-lang.org/stable/error-index.html#E0594

Rc References: No Mutation!
error[E0594]: cannot assign to data in an `Rc`
 --> src/main.rs:5:5
 |
5 | *b = 43;
 | ^^^^^^^ cannot assign
 |
 = help: trait `DerefMut` is required to modify through a dereference, but it is not implemented for
`Rc<i32>`

Rc only allows immutable contents
 let mut b = Rc::new(42);
 b = Rc::new(43); // fresh heap alloc

35

mut b means that I can reassign b, but not the object it references!

https://doc.rust-lang.org/stable/error-index.html#E0594

But: Cells are Mutable

• Cell<T>: like Box<T> but with mutable contents
pub fn set(&self, val: T)

• moves the data in
pub fn get(&self) -> T

• copies the data out
pub fn take(&self) -> T

• moves the data out, leaving Default::default()
pub fn get_mut(&mut self) -> &mut T

• requires a &mut self

36

Cell example (from Rust book)
use std::cell::Cell;

struct SomeStruct {
 regular_field: u8,
 special_field: Cell<u8>,
}

let my_struct = SomeStruct {
 regular_field: 0,
 special_field: Cell::new(1),
};

let new_value = 100;

// ERROR: `my_struct` is immutable
// my_struct.regular_field = new_value;

// WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
// which can always be mutated
my_struct.special_field.set(new_value);
assert_eq!(my_struct.special_field.get(), new_value);

37

Cell Limitations

• Cell is great if
• you can copy the contents in and out
• and you have mutable references to the cell whenever you want

to modify the cell's contents
• and you can reason statically about lifetimes

• But what if you can't or don't?
• e.g., you want to access contents of cell without copying it out

(maybe it's a struct that's not Copy)
• Enter: RefCell

38

RefCell<T>
pub const fn new(value: T) -> RefCell<T>

• Looks similar…
pub fn borrow(&self) -> Ref<'_, T>

• This is a dynamic borrow
• "The borrow lasts until the returned Ref exits scope. Multiple immutable

borrows can be taken out at the same time…Panics if the value is
currently mutably borrowed. "

pub fn borrow_mut(&self) -> RefMut<'_, T>

• Note &self, not &mut self!
• "The borrow lasts until the returned RefMut or all RefMuts derived from

it exit scope. The value cannot be borrowed while this borrow is active."
Ref and RefMut are only for use with RefCell

39

Ref<T> vs. &T
• Both Ref<T>, returned by borrow*, and &T, implement Deref

• Code that uses them will be similar

&T

 let x = 42;
 let r = &x;
 assert_eq!(*r, 42);

Ref<T>

 let cell = RefCell::new(42);
 let cell_ref : Ref<i32> = cell.borrow();
 assert_eq!(*cell_ref, 42);

40

Static vs. Dynamic Borrow Tracking
• &T an d &mut T: static (compile-time) tracked of borrows

• RefCell<T>::borrow*: dynamic (run-time) tracked of borrows
 pub fn borrow(&self) -> Ref<'_, T>
 pub fn borrow_mut(&self) -> RefMut<'_, T>
– Ref<'_, T>, RefMut<'_, T> implement dynamic tracking

of outstanding, borrowed references
– If borrow_mut() with an outstanding Ref, panic!

• Static tracking is better if you can make it work
• no run time overhead; earlier bug detection

41

How Does Dynamic Borrowing Work?

• Each RefCell has a borrow count to track outstanding Refs and
RefMuts for that RefCell
• RefCell borrow and borrow_mut increment the count
• When a Ref (or RefMut) goes out of scope, Rust calls drop(),

which decrements the borrow count

 use std::cell::RefCell;
 let c = RefCell::new(5); // imm_count=0
 let m = c.borrow(); // imm_count=1
 let b = c.borrow_mut(); // panic!

42

Shared Mutable Data

• Use Rc<RefCell<T>>
• The RefCell permits mutating T (at risk of run-time borrow errors)
• Rc permits sharing, e.g., within a data structure

• Rc<RefCell<u32>> has two counts:
• Reference count for Rc (should this RefCell be deallocated?)

• Incremented via Rc::clone()
• Dynamic version of lifetime

• Borrow count for RefCell (are borrow(), borrow_mut() safe?)
• Incremented via RefCell borrow and borrow_mut
• Dynamic version of borrow checking

43

Quiz 3
let r1 = Rc::new(RefCell::new(42));
let r2 = r1.clone();
let m = (*r1).borrow_mut();
*m = 43;
println!("{:?}", *r2.borrow());

A. "42"
B. "43"
C. panic
D. Compiler error

44

Quiz 3
let r1 = Rc::new(RefCell::new(42));
let r2 = r1.clone();
let m = (*r1).borrow_mut();
*m = 43;
println!("{:?}", *r2.borrow());

A. "42"
B. "43"
C. panic
D. Compiler error

45

error[E0596]: cannot borrow `m` as mutable, as it is not declared as mutable
 --> src/main.rs:10:10
 |
9 | let m = (*r1).borrow_mut();
 | - help: consider changing this to be mutable: `mut m`
10 | *m = 43;
 | ^ cannot borrow as mutable

https://doc.rust-lang.org/stable/error-index.html#E0596

Quiz 3
let r1 = Rc::new(RefCell::new(42));
let r2 = r1.clone();
let m = (*r1).borrow_mut();
*m = 43;
println!("{:?}", *r2.borrow());

46

borrow_mut() returns a DerefMut
DerefMut:
pub fn deref_mut(&mut self) -> &mut Self::Target

To mutate the referenced value, we need a mutable DerefMut

https://doc.rust-lang.org/std/ops/trait.Deref.html#associatedtype.Target

Quiz 4
let r1 = Rc::new(RefCell::new(42));
let r2 = r1.clone();
let mut m = (*r1).borrow_mut();
*m = 43;
println!("{:?}", *r2.borrow());

A. "42"
B. "43"
C. panic
D. Compiler error

47

Quiz 4
let r1 = Rc::new(RefCell::new(42));
let r2 = r1.clone();
let mut m = (*r1).borrow_mut();
*m = 43;
println!("{:?}", *r2.borrow());

A. "42"
B. "43"
C. panic
D. Compiler error

48

m’s mutable borrow of the RefCell is still outstanding when borrow() is invoked.

Quiz 5
let r1 = Rc::new(RefCell::new(42));
let r2 = r1.clone();
{
 let mut m = (*r1).borrow_mut();
 *m = 43;
}
println!("{:?}", *r2.borrow());

A. "42"
B. "43"
C. panic

49

Quiz 5
let r1 = Rc::new(RefCell::new(42));
let r2 = r1.clone();
{
 let mut m = (*r1).borrow_mut();
 *m = 43;
}
println!("{:?}", *r2.borrow());

A. "42"
B. "43"
C. panic

50

Summary

• From the book [1]:
• Rc<T> enables multiple owners of the same data; Box<T> and
RefCell<T> have single owners.

• Box<T> allows immutable or mutable borrows checked at
compile time; Rc<T> allows only immutable borrows checked at
compile time; RefCell<T> allows immutable or mutable borrows
checked at runtime.

• Because RefCell<T> allows mutable borrows checked at
runtime, you can mutate the value inside the RefCell<T> even
when the RefCell<T> is immutable.

51
[1] https://doc.rust-lang.org/book/ch15-05-interior-mutability.html
Additional examples: https://doc.rust-lang.org/rust-by-example/std/rc.html

https://doc.rust-lang.org/book/ch15-05-interior-mutability.html

A Quick Summary

• &mut: use when you only need one mutable reference
• Rc: reference-counted, shared reference to the heap
• RefCell/Cell: mutable contents even when immutable

• Borrowing via a special Ref value, which ensures that Rust's
borrow checking rules are followed dynamically

• Combine with Rc for shared mutability
• Ref/RefMut: only used for accessing RefCell.

52

Conclusions

• Ideally, design Rust programs so each value has one owner
• But that's not always possible
• Even when it is, those designs may have other costs

• When necessary, use Rc, RefCell to relax Rust's static constraints
• Part of a programming discipline called interior mutability.
• With great power comes great responsibility!

53

