
Copyright © 2022 Michael Coblenz, Michael Hicks

Safe Programming With Rust
Slide credit today: Michael Hicks

Why Rust in a Software Engineering Course

• I've been telling you about the security implications of using
unsafe languages

• But that advice is only actionable if you have a practical
alternative!

• Enter: Rust.

CMSC 330 Spring 2021

What choice do programmers have today?

C/C++
• Low level
• More control
• Performance over safety
• Memory managed

manually
• No periodic garbage

collection
• …

Java, OCaml, Go, Ruby…
• High level
• Secure
• Less control
• Restrict direct access to memory
• Run-time management of memory

via periodic garbage collection
• No explicit malloc and free
• Unpredictable behavior due

to GC
• …

CMSC 330 Spring 2021

Rust: Type- and Thread-safe, and Fast

• Begun in 2006 by Graydon Hoare
• Sponsored as full-scale project and announced by Mozilla

in 2010
– Changed a lot since then; source of frustration
– But now: most loved programming language in Stack Overflow

annual surveys every year from 2016 through 2020
• Takes ideas from functional and OO languages, and recent

research
• Key properties: Type safety, and no data races, despite use

of concurrency and manual memory management

CMSC 330 Spring 2021

Features of Rust
• Lifetimes and Ownership

– Key feature for ensuring safety
• Traits as core of object(-like) system
• Variable default is immutability
• Data types and pattern matching
• Type inference

– No need to write types for local variables

• Generics (aka parametric polymorphism)
• First-class functions
• Efficient C bindings

CMSC 330 Spring 2021

Rust in the real world
• Firefox Quantum and Servo components

– https://servo.org
• REmacs port of Emacs to Rust

– https://github.com/Wilfred/remacs
• Amethyst game engine

– https://www.amethyst.rs/
• Magic Pocket filesystem from Dropbox

– https://www.wired.com/2016/03/epic-story-dropboxs-exodus-
amazon-cloud-empire/

• OpenDNS malware detection components
• https://www.rust-lang.org/en-US/friends.html

https://servo.org
https://github.com/Wilfred/remacs
https://www.amethyst.rs/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.rust-lang.org/en-US/friends.html

CMSC 330 Spring 2021

Information on Rust

• Rust book free online
– https://doc.rust-lang.org/book/
– We will follow it in these lectures

• More references via Rust site
– https://www.rust-lang.org/en-US/

documentation.html
• Rust Playground (REPL)

– https://play.rust-lang.org/

https://doc.rust-lang.org/book/
https://www.rust-lang.org/en-US/documentation.html
https://www.rust-lang.org/en-US/documentation.html
https://play.rust-lang.org/

CMSC 330 Spring 2021

Installing Rust

• Instructions, and stable installers, here:

• On a Mac or Linux (VM), open a terminal and run

• On Windows, download+run rustup-init.exe

https://www.rust-lang.org/en-US/install.html

curl https://sh.rustup.rs -sSf | sh

https://static.rust-lang.org/rustup/dist/i686-pc-windows-gnu/
rustup-init.exe

CMSC 330 Spring 2021

Rust compiler, build system

• Rust programs can be compiled using rustc
– Source files end in suffix .rs
– Compilation, by default, produces an executable

• No –c option

• Preferred: Use the cargo package manager
– Will invoke rustc as needed to build files
– Will download and build dependencies
– Based on a .toml file and .lock file

• You won’t have to mess with these for this class

– Like ocamlbuild or dune

CMSC 330 Spring 2021

Using rustc

• Compiling and running a program

% rustc main.rs
% ./main
Hello, world!
%

fn main() {
 println!("Hello, world!”)
}

main.rs:

CMSC 330 Spring 2021

Using cargo

• Make a project, build it, run it

% cargo new hello_cargo --bin
% cd hello_cargo
% ls
Cargo.toml src/
% ls src
main.rs
% cargo build
 Compiling hello_cargo v0.1.0 (file:///…)
 Finished dev [unoptimized + debuginfo] …
% ./target/debug/hello_cargo
Hello, world!

fn main() {
 println!("Hello, world!”)
}

More at https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html

Use cargo to run tests,
too; will discuss later

https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html

CMSC 330 Spring 2021

Rust, interactively

• Rust has no top-level a la
OCaml or Ruby

• There is an in-browser
execution environment
– https://play.rust-lang.org/

CMSC 330 Spring 2021

Rust Documentation

• Rust documentation is a good reference, and way to learn
– https://doc.rust-lang.org/stable/

• This contains links to
– the Rust Book (on which most of our slides are based),
– the reference manual, and
– short manuals on the compiler, cargo, and more

https://doc.rust-lang.org/stable/

14

Testing

• In any language, there is the need to test code
• In most languages, testing requires extra libraries:

– Minitest in Ruby
– Ounit in Ocaml
– Junit in Java

• Testing in Rust is a first-class citizen!
– The testing framework is built into cargo

Unit Testing In Rust
#[cfg(test)]		
mod	tests	{		
	 #[test]		
	 fn	it_works()	{		
	 	 assert_eq!(my_function(),	4);		
	 }	
	}

Mark the module as
containing tests

Mark this function as a
test

Unit Testing In Rust

• Unit testing is for local or private functions
• Put such tests in the same file as your code

• Use assert! to test that something is true
• Use assert_eq! to test that two things that implement the
PartialEq trait are equal
• E.g., integers, booleans, etc.

Integration Testing In Rust

• Integration testing is for APIs and whole programs
• Create a tests directory
• Create different files for testing major functionality
• Files don’t need #[cfg(test)] or mod tests

– But they do still need #[test] around each function

• Tests refer to code as if it were an external library
– Declare it as an external library using extern crate
– Include the functionality you want to test with use

Integration Testing In Rust

pub fn add(a: i32, b: i32) -> i32 {
 a + b
}

src/lib.rs

extern crate my-project-name;
use my-project-name::add;
#[test]
pub fn test_add() {
 assert_eq!(add(1,2), 3));
}
#[test]
pub fn test_negative_add() {
 assert_eq!(add(1,-2), -1));
}

tests/test_add.rs

Running Tests

• cargo test runs all of your tests
• cargo test s runs all tests that contain s in the name
• By default, console output is hidden

• Use cargo test -- --nocapture to un-hide it

CMSC 330 Spring 2021

Fun Fact

• The original Rust compiler was written in OCaml
– Betrays the sentiments of the language’s designers!

• Now the Rust compiler is written in … Rust
– How is this possible? Through a process called bootstrapping:

• The first Rust compiler written in Rust is compiled by the Rust compiler written
in OCaml

• Now we can use the binary from the Rust compiler to compile itself
• We discard the OCaml compiler and just keep updating the binary through self-

compilation
• So don’t lose that binary! ☺

Copyright © 2022 Michael Coblenz, Michael Hicks

Ownership

Memory: the Stack and the Heap
• The stack

– constant-time, automatic (de)allocation
– Data size and lifetime must be known at compile-time

• Function parameters and locals of known (constant) size

• The heap
– Dynamically sized data, with non-fixed lifetime

• Slightly slower to access than stack; i.e., via a pointer

– GC: automatic deallocation, adds space/time overhead
– Manual deallocation (C/C++): low overhead, but non-trivial

opportunity for devastating bugs
• Dangling pointers, double free – instances of memory corruption

Memory: the Stack and the Heap

// C
char *p = malloc(10)
…
free(p);

stack

heap

p

// Java
String p = new String(”rust");
…
p = null;//GC will collect later

p is deleted from stack when the function terminates

Memory Management Errors

• May forget to free memory (memory leak)
{ int *x = (int *) malloc(sizeof(int)); }

• May retain ptr to freed memory (dangling pointer)
{ int *x = ...malloc();
 free(x);
 x = 5; / oops! */
}

• May try to free something twice (double free)
{ int *x = ...malloc(); free(x); free(x); }
• This may corrupt the memory management data structures

– E.g., the memory allocator maintains a free list of space on the heap
that’s available

GC-less Memory Management, Safely

• Rust’s heap memory managed without GC
• Type checking ensures no dangling pointers or double

frees
– unsafe idioms are disallowed
– memory leaks not prevented (not a safety problem)

• Key features of Rust that ensure safety: ownership and
lifetimes
– Data has a single owner. Immutable aliases OK, but mutation only

via owner or single mutable reference
– How long data is alive is determined by a lifetime

Memory: the Stack and the Heap

// Rust
let p = String::from("hello”);
…

stack

heap

p

p is deleted from stack when the function terminates

• Deleted when the owner p
is out of scope.

• No manual free, no GC

Ownership
Only one “owner” of an object
• When the “owner” of the object goes out of scope, its data is

automatically freed. No Garbage collection
• Can not access object beyond its lifetime (checked at compile-

time)

fn foo() {
 let mut res = Box::new(Pair {
 a: 0,
 b: 0
 });
 res.a = 42;
}

a=42

b=0

heap

res

stack

Rules of Ownership

1. Each value in Rust has a variable that’s its owner
2. There can only be one owner at a time
3. When the owner goes out of scope, the value will be

dropped (freed)

String: Dynamically sized, mutable data

• s is the owner of this data
– When s goes out of scope, its drop method is called,

which frees the data

{
 let mut s = String::from("hello");

 s.push_str(", world!"); //appends to s

 println!("{}", s);
} //s’s data is freed by calling s.drop()

Assignment Transfers Ownership

• Heap allocated data is copied by reference

– Both x and y point to the same underlying data

• A move leaves only one owner: y

let x = String::from("hello");
let y = x; //x moved to y

x’s data

y’s data

println!("{}, world!", y); //ok
println!("{}, world!", x); //fails

Prevents
double free()!

"hello"

Deep Copying Retains Ownership

• Make clones (copies) to avoid ownership loss

• Primitives copied automatically
– i32, char, bool, f32, tuples of these types, etc.

• These have the Copy trait; more on traits later

let x = String::from("hello");
let y = x.clone(); //x no longer moved
println!("{}, world!", y); //ok
println!("{}, world!", x); //ok

let x = 5;
let y = x;
println!("{} = 5!", y); //ok
println!("{} = 5!", x); //ok

Ownership Transfer in Function Calls

• On a call, ownership passes from:
– argument to called function’s parameter
– returned value to caller’s receiver

fn main() {
 let s1 = String::from(“hello”);
 let s2 = id(s1); //s1 moved to arg
 println!(“{}”,s2); //id’s result moved to s2
 println!(“{}”,s1); //fails
}

fn id(s:String) -> String {
 s // s moved to caller, on return
}

References and Borrowing
• Create an alias by making a reference

– An explicit, non-owning pointer to the original value
– Called borrowing. Done with & operator

• References are immutable by default
fn main() {
 let s1 = String::from(“hello”);
 let len = calc_len(&s1); //lends pointer
 println!(“the length of ‘{}’ is {}”,s1,len);
}
fn calc_len(s: &String) -> usize {
 s.push_str(“hi”); //fails! refs are immutable
 s.len() // s dropped; but not its referent
}

Rules of References

1. At any given time, you can have either but not both of
– One mutable reference
– Any number of immutable references

2. References must always be valid (pointed-to value not
dropped)

Borrowing and Mutation
• Make immutable references to mutable values

– Shares read-only access through owner and borrowed
references

• Same for immutable values

– Mutation disallowed on original value until borrowed
reference(s) dropped

{ let mut s1 = String::from(“hello”);
 { let s2 = &s1;
 println!("String is {} and {}",s1,s2); //ok
 s1.push_str(" world!"); //disallowed
 println!("{}", s2);
 } //drops s2
 s1.push_str(" world!"); //ok
 println!("String is {}",s1);}//prints updated s1

Mutable references

• To permit mutation via a reference, use &mut
– Instead of just &
– But only OK for mutable variables

let mut s1 = String::from(“hello”);
{ let s2 = &s1;
 s2.push_str(“ there”);//disallowed; s2 immut
} //s2 dropped
let s3 = &mut s1; //ok since s1 mutable
s3.push_str(“ there”); //ok since s3 mutable
println!(”String is {}”,s3); //ok

A. “Hello!”
B. “Hello! World!”
C. Error
D. “Hello!World!”

{ let mut s1 = String::from(“Hello!“);
 {
 let s2 = &s1;
 s2.push_str(“World!“);
 println!(“{}“, s2)
 }
}

Quiz 1: What does this evaluate to?

A. “Hello!”
B. “Hello! World!”
C. Error; s2 is not mut
D. “Hello!World!”

{ let mut s1 = String::from(“Hello!“);
 {
 let s2 = &s1;
 s2.push_str(“World!“);
 println!(“{}“, s2)
 }
}

Quiz 1: What does this evaluate to?

A. 0
B. 8
C. Error
D. 5

fn foo(s: &mut String) -> usize{
 s.push_str("Bob");
 s.len()
}
fn main() {
 let mut s1 = String::from("Alice");
 println!("{}",foo(&mut s1))
}

Quiz 2: What is printed?

A. 0
B. 8
C. Error
D. 5

fn foo(s: &mut String) -> usize{
 s.push_str("Bob");
 s.len()
}
fn main() {
 let mut s1 = String::from("Alice");
 println!("{}",foo(&mut s1))
}

Quiz 2: What is printed?

Ownership and Mutable References

• Can make only one mutable reference
• Doing so blocks use of the original

– Restored when reference is dropped

let mut s1 = String::from(“hello”);
{ let s2 = &mut s1; //ok
 let s3 = &mut s1; //fails: second borrow
 s1.push_str(“ there”); //fails: second borrow
} //s2 dropped; s1 is first-class owner again
s1.push_str(“ there”); //ok
println!(”String is {}”,s1); //ok

implicit borrow
(self is a reference)

Immutable and Mutable References

• Cannot make a mutable reference if immutable references
exist
– Holders of an immutable reference assume the object will not

change from under them!

let mut s1 = String::from(“hello”);
{ let s2 = &s1; //ok: s2 is immutable
 let s3 = &s1; //ok: multiple imm. refs allowed
 let s4 = &mut s1; //fails: imm ref already
} //s2-s4 dropped; s1 is owner again
s1.push_str(“ there”); //ok
println!(”String is {}”,s1); //ok

Aside: Generics and Polymorphism

• Rust has support like that of Java and OCaml
– Example: The std library defines Vec<T> where T can be

instantiated with a variety of types
• Vec<char> is a vector of characters
• Vec<&str> is a vector of string slices

• You can define polymorphic functions, too
– Rust:
– Java:
– Ocaml:

• More later…

fn id<T>(x:T) -> T { x }

let id x = x

static <T> T id(T x) { return x; }

Dangling References

• References must always be to valid memory
– Not to memory that has been dropped

– Rust will disallow this using a concept called lifetimes
• A lifetime is a type-level parameter that names the scope in which the data is

valid

fn main() {
 let ref_invalid = dangle();
 println!(“what will happen … {}”,ref_invalid);
}
fn dangle() -> &String {
 let s1 = String::from(“hello”);
 &s1
} // bad! s1’s value has been dropped

Lifetimes: Preventing Dangling Refs

• Another way to view our prior example

• The Rust type checker observes that x goes out of scope
while r still exists
– A lifetime is a type variable that identifies a scope
– r’s lifetime ‘a exceeds x’s lifetime ‘b

{
 let r; // deferred init
 {
 let x = 5;
 r = &x;
 }
 println!(“r: {}”,r); //fails
}

x’s lifetime ‘b
r’s lifetime ‘a

Issue:
r ⟵ x but ‘a ≰ ‘b

Lifetimes and Functions

• Lifetime of a reference not always explicit
– E.g., when passed as an argument to a function

– What could go wrong here?

fn longest(x:&str, y:&str) -> &str {
 if x.len() > y.len() { x } else { y }
}

{ let x = String::from(“hi”);
 let z;
 { let y = String::from(“there”);
 z = longest(&x,&y); //will be &y
 } //drop y, and thereby z
 println!(“z = {}”,z);//yikes!
}

String slice
(more later)

A. dog
B. hi
C. Error – y is immutable
D. Error – y dropped while still borrowed

{ let mut s = &String::from("s");
 {
 let y = String::from("y");
 s = &y;
 }
 println!("s: {}",s);
}

Quiz 3: What is printed?

Quiz 3: What is printed?

{ let mut s = &String::from("s");
 {
 let y = String::from("y");
 s = &y;
 }
 println!("s: {}",s);
}

A. dog
B. hi
C. Error – y is immutable
D. Error – y dropped while still borrowed

Lifetime Parameters
• Each reference to a value of type t has a lifetime parameter

– &t (and &mut t) – lifetime is implicit
– &’a t (and &’a mut t) – lifetime ‘a is explicit

• Where do the lifetime names come from?
– When left implicit, they are generated by the compiler
– Global variables have lifetime ‘static

• Lifetimes can also be generic

– Thus: x and y must have the same lifetime, and the returned
reference shares it

fn longest<‘a>(x:&‘a str, y:&‘a str) -> &‘a str {
 if x.len() > y.len() { x } else { y }
}

Lifetimes FAQ
• When do we use explicit lifetimes?

– When more than one var/type needs the same lifetime (like
the longest function)

• How does lifetime subsumption work?
– If lifetime ‘a is longer than ‘b, we can use ‘a where ‘b is

expected; can require this with ‘b: ‘a.
• Permits us to call longest(&x,&y) when x and y have different

lifetimes, but one outlives the other

– Just like subtyping/subsumption in OO programming
• Can we use lifetimes in data definitions?

– Yes; we will see this later when we define structs, enums,
etc.

Lifetimes FAQ
• How do I tell the compiler exactly which lines of code
'a covers?
• You can't. The compiler will figure it out.

Recap: Rules of References

1. At any given time, you can have either but not both of
– One mutable reference
– Any number of immutable references

2. References must always be valid
– A reference must never outlive its referent

