
Program Analysis

Adapted from slides by Hilton, Aldrich, and Le Goues

Learning Goals Today

• Be able to explain how soundness and completeness trade off in the
design of tools that aim to find bugs automatically.

Spot the Bug
1. static OSStatus
2. SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,
3. SSLBuffer signedParams,
4. uint8_t *signature,
5. UInt16 signatureLen) {
6. OSStatus err;
7. …
8. if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
9. goto fail;
10. if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
11. goto fail;
12. goto fail;
13. if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
14. goto fail;
15. …
16. fail:
17. SSLFreeBuffer(&signedHashes);
18. SSLFreeBuffer(&hashCtx);
19. return err;
20.}

Spot the Bug
1. static OSStatus
2. SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,
3. SSLBuffer signedParams,
4. uint8_t *signature,
5. UInt16 signatureLen) {
6. OSStatus err;
7. …
8. if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
9. goto fail;
10. if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
11. goto fail;
12. goto fail;
13. if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
14. goto fail;
15. …
16. fail:
17. SSLFreeBuffer(&signedHashes);
18. SSLFreeBuffer(&hashCtx);
19. return err;
20.}

How Should Apple Have Found the Bug?

• Better code review?

• Better testing?

• Formal verification?

• Today's approach: analyze the program's source code

Spot the Bug
1. static OSStatus
2. SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,
3. SSLBuffer signedParams,
4. uint8_t *signature,
5. UInt16 signatureLen) {
6. OSStatus err;
7. …
8. if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
9. goto fail;
10. if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
11. goto fail;
12. goto fail;
13. if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
14. goto fail;
15. …
16. fail:
17. SSLFreeBuffer(&signedHashes);
18. SSLFreeBuffer(&hashCtx);
19. return err;
20.}

This code is
unreachable.
Isn't that a
warning sign?

Hard-To-Find Bugs

• Often on a hard-to-execute codepath (need specific test cases)

• Can't actually test code exhaustively (too many paths, way too many states)

• Instead:

• Identify relevant properties (e.g. code never dereferences NULL)

• Try to prove program has those properties

Program Analysis

• Goal: answer questions about a program

• Examples:

• Might this code ever dereference NULL?

• Can I find any cases in which this code definitely divides by zero?

Soundness and Completeness
• A sound analysis finds all bugs (in a category of bugs).

• No false negatives (doesn't fail to find a bug)

• A complete analysis only reports bugs (in a category of bugs).

• No false positives (doesn't report bogus bugs)

• Generally, analyses are either unsound or incomplete (or both!)

Trust

• If a sound analysis says a program is safe, it is

• (won't miss bugs)

• If a complete analysis reports a bug, the program is buggy

• (won't report bogus bugs)

Static Analysis vs. Dynamic Analysis

• Static analysis is the analysis of programs without executing them

• Usually want to find bugs or prove safety properties (the absence of bugs)

• Often, static analyses can be made sound

• Dynamic analysis allows running programs

• Dynamic analyses are more likely to be complete (only report bugs)

Static Analysis

• Key properties:

• Liveness: "this good thing eventually happens" (e.g. server generates
a response)

• Safety: "this bad thing never happens" (e.g. dividing by zero)

Example
• What types can 'u' have at each line?

• Can 'u' be negative?

• Will n2s always return a value?

• Can there be division by zero?

• Will the returned value ever include a
'-'?

def n2s(n: int, b: int):
 if n <= 0: return '0'
 r = ''
 while n > 0:
 u = n % b
 if u >= 10:
 u = chr(ord('A') + u-10)
 n = n // b
 r = str(u) + r
return r

Example credit: Hilton et al.

Static Analysis Techniques
• Linters

• Shallow syntax analysis (unsound, incomplete, unclear properties)

• Type checking (lots of research here)

• Ensures program has well-defined semantics

• Data flow analysis, abstract interpretation (lots of research here too)

• Is a[i] always within bounds?

• Typical answers: "yes", "no", "maybe"

Rice's Theorem (Henry Rice, 1953)

• "Any nontrivial property about the language recognized by a Turing
machine is undecidable."

• Implication: interesting static analyses will be imperfect (some false
positives, false negatives, or sometimes not terminate)

Proof Sketch (by Contradiction)

• Suppose you have a function, divides_by_zero, that determines
whether an input program divides by zero.

int oops(program p, input i) {
 p(i);
 return 5/0;
}

bool halts(program p, input i) {
 return divides_by_zero(oops(p,i));
}

slide adapted from Aldrich and Le Goues

Pattern-Based Bug Detection

• e.g. SpotBugs

• Example: if a method acquires a lock, it should release it on all paths

Lock l = ...;
l.lock();
try {
 // do something
 l.unlock();
}

Oops! l remains locked if an exception is thrown

Lock l = ...;
l.lock();
try {
 // do something
} finally {
 l.unlock();
}

Tradeoffs
• Analysis must be super fast

• In general, these pattern-based detectors are unsound and
incomplete

• Google recommends static analyzers have < 10% false positives
[Sadowski]

• Otherwise developers will turn them off!
https://abseil.io/resources/swe-book/html/ch20.html

Type-Based Approaches

• Idea: Extend the type system to enable reasoning about important
properties

public class NullnessExample {
 public static void main(String[] args) {
 Object myObject = null;
 System.out.println(myObject.toString());
 }
}

$ javacheck -processor org.checkerframework.checker.nullness.NullnessChecker NullnessExample.java

NullnessExample.java:9: error: [dereference.of.nullable] dereference of possibly-null reference myObject
 System.out.println(myObject.toString());
 ^
1 error

https://checkerframework.org/tutorial/webpages/get-started-cmd.html

Abstract Interpretation

• Concrete semantics: all possible executions of a program

https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html

Safety Properties

Testing

• Can only test some of the possible trajectories

Model Checking

• Goal: Explore all possible execution paths (via logic)

• Problem: too many execution paths (loops, recursion)

• Approach: bounded model checking (execute loops at most N times)

Model Checking Example (Ed Clarke)
Model of computation

s
t

~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat
~ Error

Start
Close
Heat
~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error

Microwave Oven Example

Microwave Specification (Clarke)

• The oven doesn’ t heat up until the door is closed.

• Not heat_up holds until door_closed

• (~ heat_up) U door_closed

Model Checking Formalization (Clarke)

• Let M be a state-transition graph.

• Let ƒ be the specification in temporal logic.

• Find all states s of M such that M, s ⊨ ƒ.

Tradeoffs

• Advantages: don't have to write proofs

• Disadvantages: state explosion; have to formally specify desired
properties

Model Checking Success Story

• In early 2000s: Windows users were plagued by blue screens of death

• Most common cause: driver bugs (not Microsoft's fault)

• Solution: model check drivers

Bounded Model Checking

Abstract Interpretation

Example: Numerical Intervals

• Ideally: figure out what values variables can have

• But that requires running the program with all inputs ☹

• Instead, track bounds [L, H] for each variable

Will This Code Divide by Zero?

if (x > 0) {
 x = 2 * x + 1;
}
else {
 x = 1 - 4 * x;
}

x = 8 / (x%2)

if (x > 0)

x = 2 * x + 1;x = 1 - 4 * x;

x = 8 / (x%2)

Defining an Abstract Domain

• We need to know if (x % 2) could be 0

• Let's track whether x could be even or odd.

• Don't track all the values x could have.

• Abstract domain: {even, odd}

Analysis

if (x > 0)

x = 2 * x + 1;x = 1 - 4 * x;

x = 8 / (x%2)

{-∞, ∞}; {even, odd}

{-∞, 0}; {even, odd} {1, ∞}; {even, odd}

{3, ∞}; {odd}{1, ∞}; {odd}

{1, ∞}; {odd}

Abstract Interpretation Uses Abstract
Domains to…

A. Store concrete program states for exhaustive analysis.

B. Reduce the number of cases that must be reasoned about

C. Ensure a program executes faster by precomputing all possible outputs.

D. Simulate program execution for every possible input combination.

E. Identify the most efficient algorithm for solving a given problem.

Conclusion

• We can find lots of bugs by analyzing code

• But analyses are generally unsound, incomplete, or both

• Software engineers hate false positives, so choose analyses wisely

