
Monolithic Design vs. Microservices

How might these apps be
architected?

2

Monolithic styles: Client-server or MVC

3

Source: https://www.seobility.net (CC BY-SA 4.0)

https://developer.apple.com/library/archive/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html

Brief digression: MVC (Model-View-Controller)

• Views:
• Reusable views promote

consistency
• Modularity promotes

reusability
• Model: separate to allow

representation independence
• Controller : "business logic";

very custom

Monoliths make trade-offs on software quality

Several consequences of this architecture on:
● Scalability
● Reliability
● Performance
● Development
● Maintainability
● Evolution
● Testability
● Ownership

5

Service-based architecture –
Chrome

6

Web Browsers

7

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Browser: A multi-threaded process

8

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Multi-process browser with IPC

9

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Browser Architectures

10

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Service-based browser architecture

11

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Service-based browser architecture

12

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Microservice architecture –
Netflix

19

Netflix

20

Netflix Microservices – App Boot

● Recommendations

● Trending Now

● Continue Watching

● My List

● Metrics

21
(as of 2016)

Netflix Microservices – One Request

https://www.youtube.com/watch?v=CZ3wIuvmHeM (as of 2016)

https://www.youtube.com/watch?v=CZ3wIuvmHeM

1
7
-

Who uses Microservices?

23

Microservices –
The Hipster Shop Example

24

Online Boutique: Guess some microservices

25

https://onlineboutique.dev

https://onlineboutique.dev/
https://onlineboutique.dev/

Online Boutique Microservice Architecture

26

https://github.com/GoogleCloudPlatform/microservices-demo

Microservices

What are the consequences of this architecture? On:
● Scalability
● Reliability
● Performance
● Development
● Maintainability
● Evolution
● Testability
● Ownership
● Data Consistency

27

Scalability

28

Source: http://martinfowler.com/articles/microservices.html

Team Organization (Conway’s Law)

29

Source: http://martinfowler.com/articles/microservices.html

“Products” not “Projects”

Data Management and Consistency

30

Source: http://martinfowler.com/articles/microservices.html

Deployment and Evolution

31

Source: http://martinfowler.com/articles/microservices.html

Microservices

● Building applications as suite of small and easy to replace services
○ fine grained, one functionality per service

(sometimes 3-5 classes)
○ composable
○ easy to develop, test, and understand
○ fast (re)start, fault isolation
○ modelled around business domain

● Interplay of different systems and languages
● Easily deployable and replicable
● Embrace automation, embrace faults
● Highly observable

32

Are microservices always the right choice?

33

Microservices overhead

34

Microservice challenges

● Complexities of distributed systems
○ network latency, faults, inconsistencies
○ testing challenges

● Resource overhead, RPCs
○ Requires more thoughtful design (avoid ”chatty” APIs, be more coarse-

grained)_

● Shifting complexities to the network
● Operational complexity
● Frequently adopted by breaking down monolithic application
● HTTP/REST/JSON communication
○ Schemas?

35

Serverless

Serverless (Functions-as-a-Service)

● Instead of writing minimal services, write just functions
● No state, rely completely on cloud storage or other

cloud services
● Pay-per-invocation billing with elastic scalability
● Drawback: more ways things can fail, state is expensive
● Examples:

AWS lambda, CloudFlare workers, Azure Functions
● What might this be good for?

37

More in: API testing and DevOps

Swagger

