
Risk

Risk Is Central to Software Engineering

• Every bug may cost more to fix later.

• But every change (even bug fixes) may introduce more bugs.

• There are lots of different kinds of risks in software projects!

Today

• Learning goals:

• Understand how key risks threaten software project success

• Three key principles that affect software risk: second system effect,
the mythical man month, and Conway's Law.

• (sorry — "man" is in the title of a book)

Technical Risks
• You chose to rely on a framework that was "almost done" — but it

runs late.

• You rely on a platform, service, or framework that does not quite meet
your needs

• Or adds complexity without delivering enough value

• You underestimate the complexity of your own components

Financial Risks

• Running out of money (e.g., at a startup)

• Getting sued

• Need to give raises (for retention) but now can't hire needed staff

Requirements Risks

• Releasing software that does not meet user needs

• (even if it is of high quality)

• Releasing software that frustrates users (poor UI)

• Releasing software too late

People-Related Risks

• People leaving

• By choice (better job offer)

• By circumstance or disaster (health problems)

• By being fired (malfeasance)

• By being stolen by Management to work on a higher-priority project

Management-Related Risks
• Management changes priorities

• De-prioritizes a feature you invested in

• Prioritizes a feature you didn't invest in

• Management turnover

• Suddenly spending a lot of time "managing up"

Market Risks

• My summer internship, 2004: worked on DVD Studio Pro

• DVD authoring software

• Does anyone author DVDs anymore?

• Imagine working on a new, improved, VERY FAST, analog modem…
right before broadband took over.

Osborne 1

• First sold in 1981

• 4 MHz CPU, 64 KB RAM

• 5" monochrome CRT

• Portable (24.5 lbs)

Image credit: Wikipedia

The Osborne Effect
• April 1983: Osborne Computer Corporation pre-announced several next-generation

models

• Dealers canceled orders for Osborne 1

• Osborne dramatically reduced prices for Osborne 1

• September 1983: Osborne Computer Corporation bankrupt

• Note: Kaypro machine sales were starting to cut into Osborne sales, so this may have
been a factor too!

https://en.wikipedia.org/wiki/Osborne_effect

Scenario #1: Old and Trusted, or New and
Slick?

• You are starting a new web app development project.

• Worldwide math tutoring service. Connects tutors with students (who can afford to pay
for the service). Vision: 24/7 tutoring. You can get help anytime, day or night, via
worldwide staff.

• The year is 2030. React is old and stale (think of Ruby today). "Webby" is up and coming.

• Webby offers better performance, internationalization, and accessibility built-in.

• How will you decide? Changing later would be very expensive.

Scenario #2: Cut or Press Forward?
• One month until you promised your investors the

app would launch.

• Two key features have five weeks of estimated
work left:

• AI-based tutor screening (otherwise will have
to interview prospective tutors; very
expensive)

• Algorithm-based tutor matching (e.g., need a
calculus expert to do calculus tutoring)

• Ideas:

• Move engineers from A to B (or vice versa);
defer the other feature

• Ask engineers to work evenings and
weekends

• Hire engineers from elsewhere

• Something else?

The Mythical Man-Month
• (sorry; this is the title of a book from 1975 by Fred Brooks)

• Brooks's Law: adding more people to a late software project makes it later

• New people consume resources getting up to speed ("hey, can you explain…?")

• New people introduce more bugs

• New people re-introduce old bugs

• More people increase communication overhead (meetings…)

Communication Overhead

• Group intercommunication formula: n(n − 1)/2.

• Example: 50 developers give 50 × (50 – 1)/2 = 1,225 channels of
communication.

• Moral: keep teams small (not 50!)

source: https://en.wikipedia.org/wiki/The_Mythical_Man-Month

The Second System Effect
• The first time you design something, you know you don't know what you're

doing.

• The second time, you think you know, and you fix all the things that were wrong
the first time

• Therefore, the second system is the riskiest!

• I did this in my second system — even though I knew about the Second System
Effect!

Incremental Slippage

• Q: How does a project get one year late?

• A: One day at a time.

Awareness–Understanding Matrix

Aware Not aware

Understand
Known knowns:

Things we are aware of
and understand

Unknown knowns:
Things we are not aware of but do

understand or know implicitly

Don't
understand

Known unknowns:
Things we are aware of
but don't understand

Unknown unknowns:
Things we are neither aware of nor

understand

https://en.wikipedia.org/wiki/There_are_unknown_unknowns

Inherent Vs. Accidental Complexity
• Some problems bring inherent complexity

• Tax software is inherently complex because it has to be at least as complex as the
tax code (law)

• Automated driving software has to handle the complexities of physics and driving
laws and human behavior

• But some software systems make problems even harder

• You've seen these systems too

Conway's Law

• "[O]rganizations which design systems…are constrained to produce
designs which are copies of the communication structures of these
organizations."

• Therefore, organizational structure poses architectural risks!

https://en.wikipedia.org/wiki/Conway's_law

Surfacing Risk

• Ask team members: what might go wrong?

• A diverse team is more likely to identify more risks

• Then you can make mitigation plans.

Scenario #3:
• You are three months from releasing the tutoring web app.

• New laws in 37 US states require tutors to hold tutoring licenses

• Addison-Wesley (textbook manufacturer) launches a new web-based tutoring
service

• Now what?

• Discuss with a partner. Submit your plan on Gradescope.

Conclusion
• Surfacing risks in many categories enables you to mitigate them

• Mitigating risks often requires tradeoffs

• Know:

• Second system effect

• Mythical man month: Adding new people to a late software project makes it
later

