
Design Patterns (1)

Patterns
• Often, the same problem arises in multiple contexts

• "A Pattern Language" describes 253 patterns for architects: "All
253 patterns together form a language."

• "each pattern represents our current best guess as to what
arrangement of the physical environment will work to solve the
problem presented. The empirical questions center on the
problem—does it occur and is it felt in the way we describe it?
—and the solution—does the arrangement we propose solve
the problem? "

A Pattern Language Example
• "When they have a choice, people will always gravitate to those rooms which

have light on two sides, and leave the rooms which are lit only from one side
unused and empty."

• "Locate each room so that it has outdoor space outside it on at least two sides,
and then place windows in these outdoor walls so that natural light falls into
every room from more than one direction."

https://www.patternlanguage.com/apl/aplsample/aplsample.htm

Lighting: Two Sides vs One Side

Wrinkle the Edge

• "Wrinkling the edge" of a building
enables natural light from more than
one side of each room

Object-Oriented Patterns

• The "Gang of Four" book (1994) describes
23 patterns

• The problems they address are still
common — and so are the patterns!

• Some patterns solve multiple different
problems

Software Patterns

• "Programs live and grow, and their inhabitants—
the programmers—need to work with that
program the way the farmer works with the
homestead." (Richard P. Gabriel)

Each Pattern Solves Certain Problems
• With practice, you will see those problems and think "aha! I need THIS

pattern!"

• Not every problem has a pattern-based solution.

• At least, not a named pattern in the book.

• But when you now might think "now what?" eventually you'll think "the
usual way to do this is…".

Factory Pattern

• Sometimes object creation is complicated

• Object needs to be "hooked up" or which object to create
depends on something

• Putting this logic everywhere would violate DRY

• Solution: put complicated logic in a "factory"

Example
class Month {
 private int month;

 public String monthName() {…}
}

• How many different Month instances do we need to allocate?

• No need to ever have more than 12!

Want To Re-Use Month Objects
class MonthFactory {
 Month[] allMonths;

 public static Month createMonth(int month) {
 if (month >= 0 && month <= 11) {
 return allMonths[month];
 }
 else {
 // throw…
 }
}

Another Example
• Two varieties of maze games

• OrdinaryMazeGame uses OrdinaryRoom instances

• MagicMazeGame uses MagicMazeRoom instances

• Want to re-use the rest of the game logic (don't want two game
implementations)

source: Wikipedia, based on Design Patterns book

Rooms

(inherits from)

(abstract class)

(concrete class)

MazeGame

MakeRoom() is a factory method: it always makes a new room of the right type

Singleton Pattern
• Sometimes there should be only ONE of something.

• Often, you only want one factory!

• Other examples: logger; cache; thread pool

• Use sparingly

• Singletons smell an awful lot like global variables

Singleton in Java
class ThreadPool {
 static ThreadPool instance;

 private ThreadPool() {}

 public static ThreadPool getInstance() {
 if (instance == null) {
 instance = new ThreadPool();
 }
 return instance;
 }

 // Instance methods go here
}

Not thread-safe!

Private constructor forces singleton access

Observer Pattern

• Suppose you have a slideshow application (like this one)

• You can draw shapes

• and you can set their colors:

• Changing the color with either affordance updates both.

A First Try

Model

Controller Controller

View View

setColor()

colorChanged()

setColor()

colorChanged()

Too much coupling! Model
shouldn' t know about each

controller.

Observer

Model

Controller Controller

View View

setColor() colorChanged()setColor()

colorChanged() Notification Centernotification

ListenerListener

Adapter Pattern
• Goal: re-use existing component in a new context

• Problem: new context assumes a different interface

• Solution: Adapter

https://medium.com/@erlandmuchasaj/adapter-design-pattern-eddc3fa6f33d

Example

• Building a shopping app that aggregates data from different sources
(Shopify, BigCommerce, etc.)

• Problem: different sources have different APIs

• Solution: define a common API; wrap each source in an adapter

Existing code (don't want to
change this) Generic interface

Each service has an adapter that
implements the generic interface

Provided code
(can't change this)

Conclusion

• Design patterns succinctly describe good solutions to common
problems

• But not every problem can be solved with a design pattern!

• Very useful as vocabulary. Not as useful as a catalog of solutions until
you internalize them.

