
https://xkcd.com/327/



Security and DevSecOps
Integrating Security into the Software Development Process



The Old Way

• First, write the code

• Then, have the security people do 
their thing

• Then, let the operations people 
host it

• But doing security too late is bad…
https://www.redhat.com/en/topics/devops/what-is-devsecops



Security Has Architectural Implications

• Where is access control?

• Where is authentication?

• How are credentials passed?

• What are the attack vectors?



More Design Implications

• Tooling: you aren't going to use C/C++, are you?

• Testing processes

• Penetration tests?

• How will you mitigate social engineering attacks?



DevSecOps

• Integrate security into the development 
process

• The rest of today: how to include 
security concerns

https://www.redhat.com/en/topics/devops/what-is-devsecops



Kinds of Security Challenges
Challenge Approach

Undefined behavior Don't use unsafe languages (when 
possible)

Incorrect security-related code Review, test, control changes

Higher-level design mistakes Architectural review, penetration 
testing

Users (e.g., social engineering attacks) HCI techniques; training; compromise 
procedures



Microsoft DevSecOps Advice
• Train

• Define security requirements

• Define metrics and compliance 
reporting

• Use Software Composition 
Analysis and Governance

• Perform threat modeling

• Use tools and automation

• Keep credentials safe

• Use continuous learning and 
monitoring

https://www.microsoft.com/en-us/securityengineering/devsecops#Metrics



Train

• Glad you're here.



Define Security Requirements

• Legal and industry requirements

• Internal standards and coding practices

• Review of previous incidents, and known threats.

• Traditional requirements analysis, with security focus



Define Metrics and Compliance Reporting

• How will you know whether you've succeeded?

• Does one breach mean you've failed?

• Better to focus on progress than success/failure



Threat Modeling

• Goal: enumerate all possible 
threats

• STRIDE model helps you 
remember possible threats:

• Spoofing identify

• Tampering with data

• Repudiation

• Information disclosure

• Denial of service

• Elevation of privilege



Exercise

• In groups: enumerate possible threats for your project

• In a real meeting: spend 2 hours, identify 20-40 issues.

https://learn.microsoft.com/en-us/previous-versions/commerce-server/ee798544(v=cs.20)



Use Software Composition Analysis and 
Governance

• Vulnerabilities can come via third-party tools and components



Use Tools and Automation
• Tools must be integrated into the CI/CD pipeline.

• Tools must not require security expertise.

• Tools must avoid a high false-positive rate of reporting issues.

• Static analysis

• Dynamic analysis



Keep Credentials Safe

• Scan for keys in source code



Use Continuous Learning and Monitoring

• Continuous integration / continuous delivery

• Should run analyses automatically

• Mean time to identify (MTTI)

• Mean time to contain (MTTC)



Top 10 Threats (OWASP)
• Broken access control

• Cryptographic failures

• Injection

• Insecure design

• Security misconfiguration

• Vulnerable and outdated components

• Identification and authentication 
failures

• Software and data integrity failures

• Security logging and monitoring failures

• Server-side request forgery

https://owasp.org/www-project-top-ten/



Mitigating Key Threats



Threat 1: Untrusted Data



Avoiding Injection Attacks

• Validate input

• Avoid eval()

• Sanitize input when constructing SQL queries



Cross-Site Scripting (XSS) Attacks

1.Untrusted data enters web app

2.Data is included in content sent to a user (victim)



XSS Example

<html> 
<body> 
<?php 
print "Not found: " . urldecode($_SERVER["REQUEST_URI"]); 
?> 

</body> 
</html>

Vulnerable web page (PHP):

http://testsite.test/<script>alert("TEST");</script>User clicks a link:

User is surprised to see an alert:

Example source: https://owasp.org/www-community/attacks/xss/



Threat 2: Bad Authentication
Server

"Am I talking to a legitimate server?" "Is the client who they say they are?"

Use TLS to check server's certificate Check user credentials



Authentication vs. Authorization

• Authentication: are you who you say you are?

• Authorization: Given who you are, what can you do?

• Policies enforced with access control

https://www.icann.org/en/blogs/details/what-is-authorization-and-access-control-2-12-2015-en



Use letsencrypt.com for Free Certificates

• Without a certificate, your users can be victims of a man-in-the-
middle attack

http://letsencrypt.com


Password Cracking
• Brute force: try all strings

• Mitigation: large space of passwords

• Mitigation: avoid commonly-used passwords ("password")

• Rainbow table: pre-compute hashes of common passwords

• Search hashes in stolen password table for known passwords

• Mitigation: salts



Salts
• username: harry; password: ucsd4life

• username: bovik; password: ucsd4life

• sha256sum("ucsd4life") = 
5a321b082a1e8c97f1af3314c374780d44bb7f8dce4107231660ba0a6b852d43

• Both users' passwords hash to the same value!

• An attacker who compromises harry's account and gets a copy of the database also 
gets access to bovik's account.



Salts

• Also, both users picked bad passwords (too short)

• Solution: each user gets a random "salt"

username salt password
harry y893r2e sha256sum("harryy893r2e")
bovik asdffdsjlkfs sha256sum("bovikasdffdsjlkfs")



Passwords

• Passwords do not go in your repository!

• Passwords go in config files (store these somewhere safe)

• Passwords do not go in your database!

• Salted, hashed passwords go in your database



Principle of Least Privilege

• Only authorize access that is actually needed


