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Object-Oriented Design
It’s still about tradeoffs.
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Some things we’d like to be true

¤My teammate and I can each add a feature in 
parallel without us colliding or stopping to talk 

¤When I test my code, nobody else’s code needs to 
work or even be written 

¤ Easy to find where to add code to add a feature 

¤Mostly adding code and not modifying code 

¤ Easy to understand the class I do have to change 

Good software design gets us close to these ideals 

And yes, we’ll be making a big project feel small
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Modularity is about Teamwork!



A Concise Theory of Object-Oriented

¤Object represents a “thing” 
¤ person, car, date, … 
¤ (not two things, not ½ a thing) 

¤Object responds to messages 
¤ (method calls) 
¤ Things it does to itself 
¤ That is, other objects ask the object to 

do something to itself, with msg 

¤Objects are “opaque” 
¤ Can’t see each others’ data/vars 
¤ Messages (calls) are only way to get 

things done
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A Concise Theory of Object-Oriented, II

¤ Because object is completely 
opaque, others don’t need to know 
what’s really inside it 
¤ Each car object could be implemented 

with its own unique code 

¤ If two cars behave the same, then 
really should have same code 
¤ Otherwise a huge amount of coding 
¤ Each one would have to be tested 
¤ Creates a maintenance nightmare 

¤ So all cars are made from a common 
car template 
¤ Template = class 
¤ The car template is not a car, it’s a 

“blueprint” for a car
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Goals for today

¤See how to use these two OOP principles to improve 
your designs: 

¤SRP: Single Responsibility Principle 

¤DRY: Don't Repeat Yourself 

¤Other principles from SOLID: 

¤Open-closed principle 

¤Liskove substitution principle 

¤ Interface segregation principle 

¤Dependency inversion principle
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Open-Closed principle

¤Objects should be open for extension but closed 
for modification 

¤ i.e. enable extending class without modifying 
the class
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Liskov Substitution Principle

¤Properties of a class should hold of subclasses 

¤ i.e. anyone expecting a Super should be OK 
when receiving a Sub
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Interface Segregation Principle

¤Clients shouldn't have to implement interfaces 
they don't use 

¤Clients shouldn't have to depend on methods 
they don't use 

¤ShapeInterface includes area() 

¤But 3D shapes also include volume() 

¤Don't add volume() to ShapeInterface
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Dependency Inversion Principle

¤Depend on abstractions (interfaces), not 
concrete implementations 

¤Goal is to avoid tight coupling
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For rest of today: DRY and SRP
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Thing-ness Simplified: 
    The Single Responsibility Principle (SRP)

¤A class should be responsible for 1 thing 
(thing, capability, computation, etc.) 

¤Can phrase as “mind your own business” 
¤object does its own calculations 

¤object should not do calculations for another 

¤Easy to violate this because objects need 
to be connected to one another  
¤If you want something done, you just do it 

(oops)



Un-thing-ness: cramming related functionality into a 
single class
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SRP design has separate 
   classes for “do-ers”
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The four 
misplaced 
methods 

This is called Refactoring.

One big class into four smaller ones = 
making a big project act like a small one



New Design is Better

¤For change, you know where to find code 
¤ Changing Mechanic stuff?  Look in Mechanic 
¤ In old design, could overlook Automobile, means bug 

¤Only one locus of change 
¤ Don’t have to think about, or change, Automobile 

and Mechanic 
¤ Simpler change, fits on screen, less chance of bug 
¤ Can think of your big program as bunch of small ones 

¤Design matches world, so easier to understand 
¤ More later
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People are Complicated

Consider this Java class, which is using good naming conventions 
to convey the meanings of the methods: 
 
class Person { 
  public void rainOn(); 
  public boolean isWet(); 
  public String getSpouseName(); 
  public boolean isLeftHanded(); 
} 
 
Which methods are SRP?  

A.  rainOn(), isLeftHanded()  

B.  isWet(), getSpouseName() 

C.  isWet(), isLeftHanded() 

D.  getSpouseName(), isLeftHanded()
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D is tempting, but the fact that 
we’re getting the name from 
the Spouse object is the give-
away: the Spouse should be 
asked for its name directly.  
(Later we’ll see that the spouse 
shouldn’t be stored in the 
Person class at all.)



Thing-ness Simplified: 
      Don’t Repeat Yourself (DRY)

¤Each “thing” or computational idea 
should be expressed just once 

¤Violations are often the result of: 
¤cut-and-paste programming 

¤incomplete class (others have to do 
calculations for it, which also violates SRP) 

¤But also over-specialization of classes 
(implement object as a class)



Un-thing-ness: 
 over-collaborating classes

18



Example: iSwoon

Repetition 
(violates 
DRY)



Example: iSwoon (continued)
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This code violates SRP.  Why? 



Example: iSwoon (continued)
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Responsibility for 
Events (violates SRP)

Also note that the only 
difference between subclasses 
is a constant data value

It’s OK to call Event method, but not 
calculating on event data to derive event 
property
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Repetition 
(violates 
DRY)

Also note 
that only 
difference in 
subclasses is 
a constant



Refactored Date Class

Replaces 3 
Event 
constructors

Number instead of 
class for each date!



Refactored iSwoon Design (cont’d)
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Moved from 
Date to get SRP.  

“Factory” 
Methods 
keep Event 
details local

String, not class for each 
event!

Refactored 
Event



Rewind: 
 Now we can see symptoms in the UML
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Date methods 
are about Events 
violates SRP

These classes sound like objects



Refactored iSwoon Design (cont’d)
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But now date 
functionality here!  
Why OK?

Which of these is a wrong justification for dateSupported(int) 
is OK in Event, but validateEvent(Event) is not OK in Date? 

A. The only thing that’s going to use a Date is an Event 

B. Because whether an Event is allowed is a property of the 
Event itself, not the Date 

C. dateSupported is computing on an int, not a Date 

D. You wouldn’t have to change any code if you were to 
add another valid Event



Design Diagnosis Review
¤ Three common mistakes in design 

¤ TOO MUCH: Put all X-related functionality in class X (Automobile) 
¤ TOO FRIENDLY: Blending of closely related classes (Date & Event) 
¤ TOO LITTLE: Defining class that has only one object (Date & Event) 

¤ SRP: The Single Responsibility diagnostic 
¤ Do the “____ itself” test on methods 
¤ A change in one class causes change in another class 

¤ DRY: The Don’t Repeat Yourself diagnostic 
¤ Repetitive code 
¤ A “small” change requires many similar changes across methods 

or classes 

¤ Constant Classes: Only diff. between classes is constants 
(same methods)
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Design Repair Review
¤For SRP-violating functionality 

¤ Create additional classes, move violations there 
(Automobile) 

¤ Move into existing classes (Date & Event) 

¤For DRY-violating functionality 
¤ Create new method out of repetitive code, call it 

¤For repetitive/constant classes 
¤ Merge repetitive, similar classes and encode 

differences with variables 
¤ static String name = “SeeMovie”;  à String name;
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Take-Aways from Class Today
¤Object-oriented design is intuitive, but subtle 

¤ Java is just a tool, does not guarantee good design 
¤ (Just because I have an expensive camera does not 

make me a good photographer :) 
¤ Easy to put functionality in wrong place, make classes too 

big, or make too small 

¤ Possible to diagnosis and repair a design 
before or after the coding (may require both) 
¤ SRP: shared responsibility requires two classes to change 

together 
¤ DRY: duplicated code requires multiple methods/classes to 

change [to be continued] 

¤Unfortunately, there are many kinds of design 
mistakes, and unique repairs for them
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