
Object-Oriented Design

1Slide credit: William Griswold

Object-Oriented Design
It’s still about tradeoffs.

2

Some things we’d like to be true

¤My teammate and I can each add a feature in
parallel without us colliding or stopping to talk

¤When I test my code, nobody else’s code needs to
work or even be written

¤ Easy to find where to add code to add a feature

¤Mostly adding code and not modifying code

¤ Easy to understand the class I do have to change

Good software design gets us close to these ideals

And yes, we’ll be making a big project feel small

3

Modularity is about Teamwork!

A Concise Theory of Object-Oriented

¤Object represents a “thing”
¤ person, car, date, …
¤ (not two things, not ½ a thing)

¤Object responds to messages
¤ (method calls)
¤ Things it does to itself
¤ That is, other objects ask the object to

do something to itself, with msg

¤Objects are “opaque”
¤ Can’t see each others’ data/vars
¤ Messages (calls) are only way to get

things done
4

A Concise Theory of Object-Oriented, II

¤ Because object is completely
opaque, others don’t need to know
what’s really inside it
¤ Each car object could be implemented

with its own unique code

¤ If two cars behave the same, then
really should have same code
¤ Otherwise a huge amount of coding
¤ Each one would have to be tested
¤ Creates a maintenance nightmare

¤ So all cars are made from a common
car template
¤ Template = class
¤ The car template is not a car, it’s a

“blueprint” for a car

5

co
de

class

Goals for today

¤See how to use these two OOP principles to improve
your designs:

¤SRP: Single Responsibility Principle

¤DRY: Don't Repeat Yourself

¤Other principles from SOLID:

¤Open-closed principle

¤Liskove substitution principle

¤ Interface segregation principle

¤Dependency inversion principle
6

Open-Closed principle

¤Objects should be open for extension but closed
for modification

¤ i.e. enable extending class without modifying
the class

7

Liskov Substitution Principle

¤Properties of a class should hold of subclasses

¤ i.e. anyone expecting a Super should be OK
when receiving a Sub

8

Interface Segregation Principle

¤Clients shouldn't have to implement interfaces
they don't use

¤Clients shouldn't have to depend on methods
they don't use

¤ShapeInterface includes area()

¤But 3D shapes also include volume()

¤Don't add volume() to ShapeInterface

9

Dependency Inversion Principle

¤Depend on abstractions (interfaces), not
concrete implementations

¤Goal is to avoid tight coupling

10

For rest of today: DRY and SRP

11

Thing-ness Simplified:
 The Single Responsibility Principle (SRP)

¤A class should be responsible for 1 thing
(thing, capability, computation, etc.)

¤Can phrase as “mind your own business”
¤object does its own calculations

¤object should not do calculations for another

¤Easy to violate this because objects need
to be connected to one another
¤If you want something done, you just do it

(oops)

Un-thing-ness: cramming related functionality into a
single class

13

SRP design has separate
 classes for “do-ers”

14

The four
misplaced
methods

This is called Refactoring.

One big class into four smaller ones =
making a big project act like a small one

New Design is Better

¤For change, you know where to find code
¤ Changing Mechanic stuff? Look in Mechanic
¤ In old design, could overlook Automobile, means bug

¤Only one locus of change
¤ Don’t have to think about, or change, Automobile

and Mechanic
¤ Simpler change, fits on screen, less chance of bug
¤ Can think of your big program as bunch of small ones

¤Design matches world, so easier to understand
¤ More later

15

People are Complicated

Consider this Java class, which is using good naming conventions
to convey the meanings of the methods:

class Person {
 public void rainOn();
 public boolean isWet();
 public String getSpouseName();
 public boolean isLeftHanded();
}

Which methods are SRP?

A. rainOn(), isLeftHanded()

B. isWet(), getSpouseName()

C. isWet(), isLeftHanded()

D. getSpouseName(), isLeftHanded()

16

D is tempting, but the fact that
we’re getting the name from
the Spouse object is the give-
away: the Spouse should be
asked for its name directly.
(Later we’ll see that the spouse
shouldn’t be stored in the
Person class at all.)

Thing-ness Simplified:
 Don’t Repeat Yourself (DRY)

¤Each “thing” or computational idea
should be expressed just once

¤Violations are often the result of:
¤cut-and-paste programming

¤incomplete class (others have to do
calculations for it, which also violates SRP)

¤But also over-specialization of classes
(implement object as a class)

Un-thing-ness:
 over-collaborating classes

18

Example: iSwoon

Repetition
(violates
DRY)

Example: iSwoon (continued)

20

This code violates SRP. Why?

Example: iSwoon (continued)

21

Responsibility for
Events (violates SRP)

Also note that the only
difference between subclasses
is a constant data value

It’s OK to call Event method, but not
calculating on event data to derive event
property

22

Repetition
(violates
DRY)

Also note
that only
difference in
subclasses is
a constant

Refactored Date Class

Replaces 3
Event
constructors

Number instead of
class for each date!

Refactored iSwoon Design (cont’d)

24

Moved from
Date to get SRP.

“Factory”
Methods
keep Event
details local

String, not class for each
event!

Refactored
Event

Rewind:
 Now we can see symptoms in the UML

25

Date methods
are about Events
violates SRP

These classes sound like objects

Refactored iSwoon Design (cont’d)

26

But now date
functionality here!
Why OK?

Which of these is a wrong justification for dateSupported(int)
is OK in Event, but validateEvent(Event) is not OK in Date?

A. The only thing that’s going to use a Date is an Event

B. Because whether an Event is allowed is a property of the
Event itself, not the Date

C. dateSupported is computing on an int, not a Date

D. You wouldn’t have to change any code if you were to
add another valid Event

Design Diagnosis Review
¤ Three common mistakes in design

¤ TOO MUCH: Put all X-related functionality in class X (Automobile)
¤ TOO FRIENDLY: Blending of closely related classes (Date & Event)
¤ TOO LITTLE: Defining class that has only one object (Date & Event)

¤ SRP: The Single Responsibility diagnostic
¤ Do the “____ itself” test on methods
¤ A change in one class causes change in another class

¤ DRY: The Don’t Repeat Yourself diagnostic
¤ Repetitive code
¤ A “small” change requires many similar changes across methods

or classes

¤ Constant Classes: Only diff. between classes is constants
(same methods)

27

Design Repair Review
¤For SRP-violating functionality

¤ Create additional classes, move violations there
(Automobile)

¤ Move into existing classes (Date & Event)

¤For DRY-violating functionality
¤ Create new method out of repetitive code, call it

¤For repetitive/constant classes
¤ Merge repetitive, similar classes and encode

differences with variables
¤ static String name = “SeeMovie”; à String name;

28

Take-Aways from Class Today
¤Object-oriented design is intuitive, but subtle

¤ Java is just a tool, does not guarantee good design
¤ (Just because I have an expensive camera does not

make me a good photographer :)
¤ Easy to put functionality in wrong place, make classes too

big, or make too small

¤ Possible to diagnosis and repair a design
before or after the coding (may require both)
¤ SRP: shared responsibility requires two classes to change

together
¤ DRY: duplicated code requires multiple methods/classes to

change [to be continued]

¤Unfortunately, there are many kinds of design
mistakes, and unique repairs for them

29

