Object-Oriented Design

WALLY, I'VE BEEN COULD YOU

WATCHING YOU FOR PR Ao GRIMACE S0

it COMPILE WHILE I I KNOW YOURE
YOU'VE DONE NO WORKING?

DESIGN THE NEXT
MODULE IN MY HEAD.

HERE YOU

www.dilbert.com scottadams®aol.com

21305 ©2005Scott Adams, Inc./Dist. by UFS, Inc.
-

Slide credit: William Griswold

Object-Oriented Design

It's still albbout tradeoffs.

Some things we'd like to be frue

My teammate and | can each add a feature in
parallel without us colliding or stopping to talk

When | test my code, nobody else’s code needs to

work or even be written
Modularity is about Teamwork!

Easy to find where to add code to add a feature

Mostly adding code and not modifying code

Easy to understand the class | do have to change
Good software design gets us close to these ideals

And yes, we’'ll be making a big project feel small

A Concise Theory of Object-Oriented

Object represents a “thing”
O person, car, date, ...
O (nof two things, not 2 a thing)

Object responds to messages
O (method calls)
O Things it does to itself

O That is, other objects ask the object to
do something fo itself, with msg

Objects are “opaque”
O Can’'t see each others’ data/vars

O Messages (calls) are only way to get
things done

A Concise Theory of Object-Oriented, |l

Because object is completely
opaqgue, others don't need to know
what's really inside it

O Each car object could be implemented
with its own unique code

If two cars behave the same, then
really should have same code

O Otherwise a huge amount of coding
O Each one would have to be tested
O Creates a maintenance nightmare

So all cars are made from a common
car template

O Template = class

O The car template is not a car, it's a
“blueprint” for a car

Goals for today

See how to use these two OOP principles to improve
your designs:

SRP: Single Responsibility Principle
DRY: Don't Repeat Yourselt

Other principles from SOLID:
Open-closed principle

Liskove substitution principle

nterface segregation principle

Dependency inversion principle

Open-Closed principle

Objects should be open for extension but closed
for modification

l.e. enable extending class without modifying
the class

Liskov Substitution Principle

Properties of a class should hold of subclasses

l.e. anyone expecting a Super should be OK
when receiving a Sub

Interface Segregation Principle

Clients shouldn't have to implement interfaces
they don't use

Clients shouldn't have to depend on methods
they don't use

Shapelnterface includes areq()
But 3D shapes also include volume()

Don't add volume() to Shapelnterface

Dependency Inversion Principle

Depend on abstractions (inferfaces), not
concrete implementations

Goal is to avoid tight coupling

For rest of foday: DRY and SRP

Thing-ness Simplified:

The Single Responsibility Principle (SRP)

A class should be responsible for 1 thing
(thing, capablility, computation, etc.)

Can phrase as “mind your own business”
Oobject does its own calculations
Oobject should not do calculations for another

Easy to violate this because objects need
to be connected to one another

OIf you want something done, you just do it
(00ps)

Un-thing-ness: cramming related functionality info a

single class

Automobile

+ start() :voi
+ stop() :void |* 77 SRP Analysis for _ Automobile

that the
+ changcTircs automabile is Follows Violates
: _ vesponsible for You may have SRP SRP
+ dV‘lVC() IVOI(starting and ; /"—_‘ to add an 5"
stopping. That's or 3 word or

+ W&Sho :VOid a Queron 04‘ —“;The hvfpmobilc SQV"U:SJ H'Sle. '&W {'ﬂ make
+ theekOil() o e atonble > The _ Atomobile _ stopls] fself, he sentence

. The _ Automobile _changesTives itself.
t 9¢t0il0) :inf An automobile s/') The _Automobile _drivels] itself.
— NOT vesponsible —L»-The _ Aubomabile washles] ftself.

or ﬁhangmg

it oun fives, > The _futomobile _ cheekls] ol jtgelf.
Washing itself, The __Automobile getls] oil itself.

or L
hCCklng 1{5
own OI’

QO000ER

This one was a little
trlcky—wc thoughf t'.hat'.

T/Ou should have U\oug\'\{ (.Arcﬁu'ny while 3 automebile o ¥
about this one, and what \[gctv start and sbop Y "
means This is a method {ha£ J'J"{- rcally the VCSPOhS:b’."{’ ;\
veturns the amount of oil in the M to drive the C:;);o d

automobile—and that is_something
that the automobile should do

SRP design has separate

classes for “do-ers”

One big class into four smaller ones =
making a big project act like a small one

 Automobile

’ + start() :void
| + stop() :void |

Th f | + c.L.a;.acTi'. CS({,n eSSV CEJ) v.).luI
€ Tour | ddisivelveid

misplaced » | + waa\n() Vo
L al LNy -1 ‘
mCThOdS CWeCKUTI 7 voTu [
+ gf%O\If/) iint

This is called Refactoring.

14

New Design Is Betfter

For change, you know where to find code
O Changing Mechanic stuffe Look in Mechanic
O In old design, could overlook Automobile, means bug

Only one locus of change

O Don't have to think about, or change, Automobile
and Mechanic

O Simpler change, fits on screen, less chance of bug
O Can think of your big program as bunch of small ones

Design matches world, so easier to understand
O More later

People are Complicated

Consider this Java class, which is using good naming conventions
to convey the meanings of the methods:

class Person {
public void rainOn();
public boolean isWet();
public String getSpouseName|();
public boolean isLeftHanded();

}

D is tempting, but the fact that
we're getting the name from
the Spouse object is the give-

Which methods are SRP? away: the Spouse should be
asked for its name directly.

A. rainOn(), isLeffHanded() (Later we'll see that the spouse
shouldn’t be sfored in the

B. isWet(), getSpouseName() Person class at all.)
C. isWet(), isLeftHanded()
D. getSpouseName(), isLeftfHanded()

Thing-ness Simplified:

Don’t Repeat Yourself (DRY)

Each “thing” or computational idea
should be expressed just once

Violations are often the result of:
O cut-and-paste programming

Odincomplete class (others have to do
calculations for it, which also violates SRP)

But also over-specialization of classes
(Implement object as a class)

Un-thing-ness:

over-collaborating classes

 Dte
The Date elass Currenﬂy

handles the i)cb of seeing | 4 SCCMO‘[\CO void

it a particular event () woid
is appropriate for 2 /| + 3°T°Rcshawah+'

particular date. d F\owm() woid

0.%

There's 3 method
for eath type of
event that ean be
added to a date

£)-boolean

events

Remember, eath elass should be
vesponsible only for i{sclf,‘and
shouldn't vely on +things going on
inside other tlasses.

+ 5:fM§me/) : & frin_g

—

validateEventlevent : Even

SeeMovieEvent

ThivdDate

3 validateBvent(event : E\:?;Ea .

SetondDate + getName() :String

— name : S{rins = “SeeMovie”

\ E“C“\B
ValldahEVCh‘{’,(CVﬂ\{’, EVCI\U * vahda{:cEVcn l’,(CVC'\k

it i methods
1l of the logit in these metl
ﬁccds 4o be updated every Lime you
add a3 new {,\{?C o(: chnf

GoToRestaurantEvent
- name : String =

“GoToRestaurant”

+ getName() Sf?a/

The different Date tlasses have 4o
know what these name strings are
to detide what events are allowed
on a specific date, but if the name
of the event thanges, the Date
subelasses have 4o thange, too.

OrdevFlowersEvent

+ getName() :String

“OvderFlowers”

~/documents/110/iSwoon/Original

class Date {

protected static ArrayList<String> allowedEvents;

protected ArrayList<Event> events = new ArrayList<Event>();

public void seeMovie() {
Even leEvent();

if va11dateEvent(event

throw eventNotAllowedOnDateEvent(event, this);

}
pubTwc void goToRestaurant() {

taurantEvent(),

Repetition

. (violates
throw eventNotAllowedOnDateEvent(event, this);

} DRY)

public void orderF1owers() {
Jowersevent();
if

throw eventNotAllowedOnDateEvent(event, this);

}
public boolean goonDate() {

~/documents/110/iSwoon/Original

protected boolean validateEvent(Event event) {
for (String eventName : allowedEvents)
if (eventName.equals(event.getName())) return
return :

% This code violates SRP. Why?¢

class FirstDate extends Date {

protected static ArrayList<String> allowedEvents
new ArrayList<String>(Arrays.asList(,

public FirstDate() {}
}

class SecondDate extends Date {

protected static ArrayList<String> allowedEvents
new ArrayList<String>(Arrays.asList(,

));
public SecondDate() {}

}
class ThirdDate extends Date {

protected static ArrayList<String> allowedEvents =
new ArrayList<String>(Arrays.asList(,

));

~/documents/110/iSwoon/Original

protected boolean validateEvent(Event event) {
for (String eventName : allowedEvents
if [(eventName.equals(event.getName return ;
retu X 3

[

% \ It's OK fo call Event method, but nof
calculating on event data to derive event

property

class FirstDate extends Date {

protected static ArrayList<String> allowedEvents =
new ArrayList<Str1ngﬂ(Arrays.asList(, D]
public FirstDate() {}

) NeNelelaNlelllja%{els

Events (violates SRP)

class SecondDate extends Date {
rotected static ArrayList<String> al —

p)gew ArrayList<Str1né>(Arrays.agListb , ,

public Secondbate() {} Also note that the only

} difference between subclasses

class ThirdDate extends Date { IS a constant data value
rotected static ArrayList<String> al —

p)gew ArrayList<Str1né>(Arrays.agListi ,

~/documents/110/iSwoon/Original
class Event {

protected static String name;
public String getName {

return name;
}
class SeeMovieEvent extends Event {
protected static String name =
public SeeMovieEvent() {}

}

class GoToRestaurantEvent extends Event {

Repetition
(violates
DRY)

protected static String name =

public GoToRestaurantEvent() {}

}
klass OorderFlowersEvent extends Event { Also note
protected static String name = ; that Only

public orderFlowersevent() {} difference in
} subclasses is
) a constant

Refactored Date Class

~/documents/110/iSwoon/RefactoredForSRPandDRY Number InS-I-eOd Of
class Date {

| «— class for each date!
protected int dateNum;
protected ArrayList<Event> events = new ArrayList<Event>();

protected Date(int dateNumber) {
dateNum = dateNumber;

}

P04 Cevent. datesuppor ted (datenum) Replaces 3
e_lgg/ents add(event); EVGI’\T

) throw eventNotAllowedOnDateEvent(event, this); COﬂSTI’UCTOI’S

public boolean goonbDate() { }

}

~/documents/110/iSwoon Refactored
uass Event { String, not class for eoch

protected String name; </even’r|

protected int firstAllowedDate = Integer.MAX_VALUE;

public Event(int eventsFirstAllowedDate, String eventName) {

firstAllowedDate = EventsFirstAllowedDate;
name = eventName
}
protected boolean dateSupported(int dateNumber) { Moved from
return dateNumber >= firstAllowedDate;
} Date to get SRP.
-~
public static Event makeSeeMovie() { return new Event(l,); }
public static Event makeGoToRestaurantEvent() {
bk 11
) return new Event(,) FCICTOry .
public static Event makeOrderFlowers() { Methods
return new Event(”,); keep Fvent
} .
details local

}

Rewind:

Now we can see symptoms in the UML

CU\’V‘CHHY

 of secing | 4 seeMovie() void

event

Remember, each tlass should be
vesponsible only for itself, and

shouldn't vely on +things going on

inside other tlasses.

for 3 / + goToRes{‘,awah{ZO oid
' \ + wdch\oweYS() wvoid

Cvcn{-_s

Prgd

7 getName() : String
Par -~ e

add

Eva:bw/can

— -

\%#ngiﬁkfﬂcwﬂ2wmff

SeeMovieEvent

- name : String =
“QoToRestaurant”

+ getName() 3{7,9/’

The different Date tlasses have 4o
know what these name strings are
Al of the logje in these methods

— name : S{rins = “SeeMovie”

T —

3 validateEvent(event : Em% .

+ getName() :String

validateEvent(event : E:bv:Ean

3 validateEvent(event : Em% .

| j,: :i?f:’(‘w}‘? zvcr;fs{azc allowed
dated every Time Yyou R
needs to \JC;\’C of event. e T Da{:: |
\ i ot subelasses have 4o thange, {oo.

+ getName() :String

“OvderFlowers”

These classes sound like objects

25

~Jdocuments/110/iSwoon/RefactoredForSRPandDRY S
Event {

String name;
t firstAllowedDate = Integer.MAX_VALUE;

Event(int eventsFirstAllowedDate, String eventName) {
firstAllowedDate EventsFirstAllowedDate;
name eventName

}

return dateNumber >= firstAllowedDate; functionality herel

Why OKe

dateSupported(int dateNumber) { }BUT now date

}

Which of these is a wrong justification for dateSupported(int)
Is OK In Event, but validateEvent(Event) is not OK in Date?

A. The only thing that's going to use a Date is an Event

B. Because whether an Event is allowed is a property of the
Event itself, not the Date

C. dateSupported is computing on an inf, not a Date

U

. You wouldn't have to change any code if you were to
add another valid Event y

Design Diagnosis Review

Three common mistakes in design

O TOO MUCH: Put all X-related functionality in class X (Automobile)
O TOO FRIENDLY: Blending of closely related classes (Date & Event)
O TOO LITTLE: Defining class that has only one object (Date & Event)

SRP: The Single Responsibility diagnostic
O Do the “ itself” test on methods
O A change in one class causes change in another class

DRY: The Don't Repeat Yourself diagnostic
O Repetitive code

O A “small” change requires many similar changes across methods
or classes

Constant Classes: Only diff. between classes is constants
(same methods)

27

Design Repair Review

For SRP-violating functionality

O Create additional classes, move violations there
(Automobile)

O Move info existing classes (Date & Event)

For DRY-violating functionality
O Create new method out of repetitive code, call it

For repetitive/constant classes

O Merge repetitive, similar classes and encode
differences with variables

O static String name = “SeeMovie”; = String name;

28

Take-Aways from Class Today

Object-oriented design is infuitive, but subtle
O Java is just a tool, does not guarantee good design

(Just because | have an expensive camera does not
make me a good photographer ;)

O Easy to put functionality in wrong place, make classes too
big, or make too small

Possible 1o diagnosis and repair a design
before or after the coding (may require both)

O SRP: shared responsibility requires two classes to change
together

O DRY: duplicated code requires multiple methods/classes to
change [to be continued]

Unfortunately, there are many kinds of design
mistakes, and unique repairs for them

29

