Michael Coblenz

Copyright © 2024 Michael Coblenz

- Think-aloud usability studies: a way to gather ground truth about challenges people face when using your software
- Additional resource: <u>https://www.nngroup.com/articles/usability-</u> testing-101/
- Brief Agile introduction (more on Monday) •

Today

A TOUR OF QUALITATIVE METHODS

- Data sources
 - Interviews and focus groups
 - Usability studies
 - Surveys
 - Contextual inquiry
 - Corpus studies

- Analytic approaches
 - Thematic analysis
 - (others)

INTERVIEWS AND FOCUS GROUPS

- Method: make a list of questions. Ask them I-I or to a group.
- Useful when you want to learn from experts
- Results depend on interview skill and quality of participants

s. Ask them I-I or to a group. from experts ill and quality of participants

USABILITY STUDIES

- problems they have.
- RQ: "What challenges do users have when they do X?"
- Great for iterating on designs
- Depends on availability of suitable users and tasks

Method: ask participants to do tasks with a system. Observe what

SURVEYS

- Useful for gathering data from many people
- Not great for depth

CONTEXTUAL INQUIRY

- Watch someone doing a task
- Depends on finding an expert

CORPUS STUDIES

- RQ: "How often does X occur in the wild?"
 - or: "Does X ever occur in the wild?"
- e.g., X = null pointer dereference bugs
- e.g., X = harassment of open-source contributors
- Requires an X detector (maybe manual analysis) and a corpus

ANALYSIS

- Many qualitative studies produce textual data
 - Interview transcripts
 - Bug reports
 - Code snippets
 - Images •
- Can we do better than "I read it and it seems to me..."?

IN PRACTICE

- Industrial user studies are usually informal.
- Not trying to produce generalizable results or convince others.
- But I'm going to hint at a more structured way anyway.

OPEN-CODETHE DATA

- Meaning: categorize each element
- Manual process
- Can parallelize (have multiple coders)
 - Then have to worry about consistency
- Now you have categories!

Running Studies

STUDY DESIGN OVERVIEW

- Running studies requires:
 - If research study: ethics approval (but this is not a research class)
 - Recruiting
 - Training
 - Task design
 - Data collection/analysis

- How will you incentivize people to take the test?

PARTICIPANT PRE-SCREENING

• Can issue a pre-test to avoid wasting time on unqualified participants.

Which of the following might be a valid Java constructor invocation?			
malloc(sizeof(Square))		Do not use an	
Square.new(5)	In Java, encapsulation refers to:	Which statem	
	Preventing clients from improperly depending on		
square(5)	Serializing data correctly so that it is transmitted		
new Square(5)	Using the capsule keyword to protect secret da	Interfaces have field declaration unless they are	
	<pre>void test() {</pre>	public stat final.	
	<pre>ArrayList list1 = new ArrayList() list1.add(1);</pre>	Methods in int are public by c	
	ArrayList list2 = list1; list2.add(2);	Methods in int (except for de	
	System.out.println(list1.size()), }	methods) lack	
	If test () is run, what is the output?	A class can implement no	
	1	than one interf	
	2		

any external resources to answer this question.

ments are true of interfaces in standard Java?

	True	Fa
ions are atic	Ο	
nterfaces default.	Ο	(
n terfaces efault k bodies.	Ο	(
o more erface.	Ο	

DEMOGRAPHICS

- Collect information if you want it!
- Age? Gender? Experience?

- How will you prepare your participants?
- People don't read.
- People think they understand but in fact do not.
- Teach...and then assess.
- Or: decide that no training is necessary.

TRAINING

A Obsidian

Search docs

Getting Started

□ Obsidian Language Tutorial

Ownership - Introduction

Ownership - Transactions

Ownership - Variables

Ownership - Miscellaneous

Assets

States – Introduction

States – Manipulating State

States - Miscellaneous

States and Assets

Using Obsidian on a Blockchain

Taking Advantage of Ownership

Obsidian Reference

Using the compiler

Display a menu

Contributing to Obsidian

Support open source while hiring your next developer with Read the Docs

Sponsored · Ads served ethically

v: latest 🔻

Docs » Obsidian Tutorial

Obsidian Tutorial

- Ownership Introduction • Principles of ownership
- Ownership Transactions
 - Transaction return types
 - Transaction parameters
 - Transaction receivers (this)
- Ownership Variables
 - Assignment
 - Fields
 - Local variables
 - Constructors
- Ownership Miscellaneous
 - Ownership checks
 - Getting rid of ownership
 - Invoking transactions
 - Handling Errors
 - Return
- Assets
- States Introduction
 - States and Ownership
- States Manipulating State
 - The -> Operator
 - Alternative field initialization
 - Optional compiler checks
 - Testing states with in
- States Miscellaneous
 - Unowned references
 - Shared references
 - Implicit casts
- States and Assets
- Using Obsidian on a Blockchain Concurrency

C Edit on GitHub

Write a contract called Person that has an Owned reference to a House and a Shared reference to a Park. The House and Park contracts are given below.

contract House {

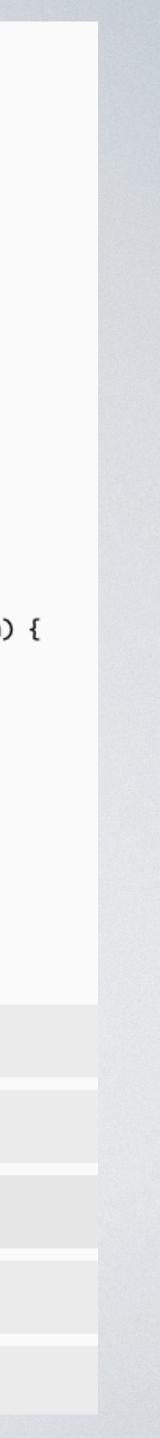
}

contract Park {

}

Please write your answer in the VSCode window (codel.obs). You may compile your code to check your answer.

```
contract Money {
     . . .
 }
 contract Wallet {
     Money@Owned m;
     Wallet@Owned() {
         m = new Money();
     }
     transaction spendMoney() returns Money@Owned {
         . . .
     3
     transaction receiveMoney(Money@Owned >> Unowned mon) {
         . . .
     3
 What is m in the above code fragment above?


    A Money object

    An Owned reference to a Money object

An Owned object

    All of the above

O None of the above
```


RECRUITMENT

- Emails
- Social network
- Buy ads
- The street

See: Report from Dagstuhl Seminar 19231 Empirical Evaluation of Secure Development Processes

INCENTIVES

- \$\$\$ (in person, MTurk)
- Desire to contribute to science
 / help you out
- Food
- Fame (leaderboard)

- Rare experience
- Learning opportunity
- Distraction from work
- Credit

THINK-ALOUD USABILITY STUDIES

- Give people tasks and observe what happens.
- NOT experiments
- NOT comparative
- Just want to see what problems people encounter.
- Follow "think-aloud" protocol

USABILITY STUDIES CAN SHOW

- Participants encountered the following problems...
- Participants were confused by...
- Only participants who knew X were able to do the task.

USABILITY STUDIES CANNOT SHOW

• My system is better than an existing system.

- Choose an interesting task
 - One that you think might be hard
 - One that is central to the usability of your design
- Can't test everything

USABILITY STUDY TASKS

- Opinions are often not convincing
- Hypothetical questions are especially unconvincing
- Need to see what actually happens when users do realistic tasks

WHY TASKS?

- This is the hardest part of study design.
- You will not get this right the first time.
- Solution: pilot repeatedly.
- What is the distribution over task times?

TASKS

- Write a program according to this specification.
- Are there bugs in this code? If so, what are they?
- Fill in the missing code...
- What does this code do?
- Answer these questions about this code.

TASK IDEAS

- Must carefully restrict tasks!
- People will get stuck on irrelevant things
- Decide how much help to provide
- Ideally: scope task to focus on the variable of interest
- Constrain the task as much as possible.

TASK DESIGN

DATA COLLECTION

- Think-aloud
- Audio recordings
- Videos
- Screen capture
- Eye tracking
- Post-study survey

Take lots of notes!, including timestamps! You do not want to watch the videos.
Include a clock on the screen.

THINK-ALOUD

- Two varieties: concurrent and retrospective
- "Please keep talking."
- Can't use timing as a dependent variable due to effect of explanations.

TASK CONTEXTS

- Pencil/paper
- Text editor
- IDE

- Compiler?
- Debugger?
- Test cases?

- the Gmail web app.

YOURTURN

You are interested in studying challenges that users have when using

• Design tasks that you will give your participants in a 30-minute study.

CONCLUSION

- Running usability studies requires:
 - Recruiting
 - Training
 - Task design
 - Data collection/analysis
- Task design is probably the trickiest. Start early and pilot!

Prep for Next Time: Agile

- Keep a prioritized list of user stories in a **backlog**
- The product owner sets priorities of backlog items
- Divide work into sprints (often, two weeks long)
- Conceptually: at end of each sprint, you could ship
- The scrum master keeps the process on track
 - Removes barriers to success

Agile Overview

- Start with a **planning meeting**
 - First, estimate user stories
 - Then, **commit** to user stories individually
- Every day: standup meeting
 - What did I do yesterday?
 - What will I do today?
 - Am I stuck?
- Then: sprint review and sprint retrospective

Sprint Structure

Sprint Review

- For each user story: demo!
- If acceptance criteria achieved, great.
 - Otherwise, user story goes back on the backlog.

Sprint Retrospective

- Discuss how the sprint went
- Refine interactions, processes, tools
- Identify and solve problems
- Decide on changes to improve effectiveness

