
Software Architecture (Part 3)
Michael Coblenz

Today's Example: Key Word In Context
• Why?

• You already read about the system

• But let's examine the tradeoffs more closely

• And we'll see how diagrams relate to code

• Note: examples and images are from Shaw and Garlan, "Software Architecture:
Perspectives on an Emerging Discipline."

Approach #1: Subroutines (Functions)
void kwic() {
 char *storage = …;
 Index *index = …;

 input(storage);

 // put shifts in index
 circularShift(storage, index);

 // sort index alphabetically
 alphabetize(storage, index);

 output(storage, index);
}

Considerations:
•A change to storage requires changes
everywhere

•Changing overall algorithm requires rewriting
kwic() function

•Can't easily reuse any components

Approach #2: Abstract Data Types

• Idea: hide representations
behind abstractions to make
modification easier

Approach #2: Abstract Data Types
void kwic() {
 CircularShift *shift = …;

 Characters *storage = input();

 shift->setup(storage);
 Shifts *shifts =
 new Shifts(shift);

 shifts.alph();

 output(shifts);
}

Approach #3: Implicit Invocation
void kwic() {
 Lines l = new Lines();
 CircularShift shift = new CircularShift();
 eventBus.subscribe("LineInserted", shift.lineInserted);
 input(lines);
 output();
}

void input(Lines lines) {
 while (line = getLine()) {
 lines.insert(line);
}

class Lines {
 void insert(String line) {
 int index = …;
 eventBus.notify("LineInserted", index);
 }
}

class CircularShift {
 void lineInserted(i) {
 String line = inputLines.ith(i);
 alphabetizerLines.insert(line);
 eventBus.shiftLineInserted();
 }
}

really this goes
elsewhere

Approach #4: Pipes and Filters

• +

• Filters are isolated

• Functions easily added or removed

• -

• Can't support interactive system (e.g. deleting a line)

• Inefficient space usage

Example 2: Oscilloscope

• Context: fancy oscilloscope (Tektronix, Inc.)

• Problem 1: want to reuse software across products (different
hardware, different user interfaces)

• Problem 2: software not configurable in different modes for different
tasks

Approach 1: Object-Oriented
Oscilloscope

Waveform

Max-min
waveform X-Y waveform Accumulate

waveform

…

• How should functionality be partitioned?
• Should measurements be associated with the data being measured, or have their own representation?
• Which objects should the UI interact with?

Approach 2: Layers
• Digitization: waveform acquisition

• Visualization: waveform manipulation

• But abstractions conflict with interactions among functions

• User interactions aren't always in terms of visual
representations

• User may need to set attenuation in the digitization layer

• If there are too many tunnels needed, maybe you have the
wrong architecture.

Manipulation

User Interface

Visualization

Digitization

Hardware

Approach 3: Pipes and Filters

• Avoids isolating functions in separate partitions

• Could feed signal directly to display filters if needed

• But how should the user interact with it?

Approach 4: Modified Pipe and Filter

• Approach: add control inputs to each filter.

• Separates analysis from actual user interface (not shown).

• But this caused performance problems: too much copying along pipes!

• Solution: several kinds of pipes: no-copy, ignore-incoming-data-while-busy

Your Turn

• Design an architecture for an elevator.

• Functional requirements: comes when called, stops at floors.

• Non-functional requirements:

• Modifiability. Need to support re-labeling floors. May want to play
ads according to the current floor.

