
Introduction to Software
Architecture, Part 2

Michael Coblenz

Slide inspiration: David Garlan (https://www.cs.cmu.edu/~aldrich/courses/413/slides/21-architecture.pdf)

https://www.cs.cmu.edu/~aldrich/courses/413/slides/21-architecture.pdf

Reminder

• Software architecture is about promoting quality attributes

• Sometimes at the expense of other quality attributes

Priorities

• You're following an agile process

• What quality attributes does that motivate?

• Modifiability!

• Lots of design choices center around: "What happens if I want to
change X?"

Layered Styles

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

Example: Internet Protocol Suite

Slide credit: Michael Hilton

Layered Styles
• Note: we're talking about static entities here (classes, modules, etc.)
• Constraint: only invoke code at lower levels

• Variation: only the next level down
• Benefits:

• Changes only affect layer(s) above (not the whole system)
• Reuse (swap out implementation of a layer)

• Considerations:
• Hard to choose right layers
• Which layer does this code go in?

Example: macOS

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/CocoaFundamentals/WhatIsCocoa/WhatIsCocoa.html#//apple_ref/doc/uid/TP40002974-CH3-SW16

Client-Server Architecture

• Clients know who the server is

• Server knows little about the clients (number, identity)

• Agree on protocol in advance

Client/Server Tradeoffs
• Promotes:

• Scalability: easy to add more clients, servers
• Modifiability: can swap out clients and servers separately

• Inhibits:
• Reliability (server/network may be down)
• Performance (network bandwidth, latency)
• Security (open ports)
• Simplicity (more failure modes to test)

Tiers

• Organize clients and servers into tiers

• IMPORTANT: tiers can be seen in a RUNTIME view

• Tiers provide services above, rely on services below

Constrast: Layers

• Layers appear in a module (static) view

3-Tiered Client-Server
• Promotes:

• security (user can't access data directly)

• performance (separate tiers can run on
separate hardware)

• availability (replicate tiers)

User Tier

Business Tier

Data Tier

Tiered Style Rules
• Each component is in exactly one tier

• Each component can use services in:

• Any lower tier ; or

• Next tier down

• Components {can or cannot} use components in same tier

Tiered Style Tradeoffs
• Advantages:

• Tiers reflect clean abstractions

• Promotes reuse

• Disadvantages:

• Unclear which tier a component belongs in

• What if a computation fits in multiple layers?

• Performance implications motivate inappropriate connections around layers (tunneling)

Tunneling

Violates layering architecture…
but sure is convenient!

Maybe also improves performance.

Publish-Subscribe Style
(Also Called "Implicit Invocation"

Event bus

Publishers
Subscribers

Key property: publishers don't know who is subscribed

Implicit Invocation
• Benefits:

• Decouples publishers from subscribers

• Promotes reuse: add a component by registering it for events

• Potential problems:

• Order of event delivery is not guaranteed

• Warning: bugs will result from accidentally depending on this order

• Choose: synchronous or asynchronous event processing

Focus: Modifiability
Goal: identify tactics that can improve modifiability

Source: https://resources.sei.cmu.edu/asset_files/TechnicalReport/2007_005_001_14858.pdf (Bachmann, Bass, Nord)

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2007_005_001_14858.pdf

When Will the Change Occur?

4 What Do We Mean by Modifiability?

Modifiability is a quality attribute of the software architecture that relates to “the cost of change
and refers to the ease with which a software system can accommodate changes” [Northrop 2004,
p. 28]. It brings up four concerns: 1) Who makes the change? 2) When is the change made? 3)
What can change? and 4) How is the cost of change measured?

In this report, we focus on modifiability as follows:

• Who makes the change? We refer to modifiability as changes made by the architect and de-
veloper, though in other situations modifications may be made by others involved in the soft-
ware system.

• When is the change made? Figure 2 shows several times in a design fragment’s life that are
important for our discussion. A portion of the system is designed and, at some later time,
modified. The modified portion of the system is then deployed and executed. In other situa-
tions, modifications may be made after deployment, but that is not represented. Note that this
representation is independent of the development process. In a waterfall process, the times
refer to the whole system, and in an iterative process, the times refer to the portion of the
system being added or modified in the current iteration.

Design time Deployment time Execution time Modification

Figure 2: Different Times in the Life of a Design Fragment That Are Important in This Report

• What can change? Determining which elements should be modifiable is an important part of
the specification process and is often overlooked. We are examining how the modifiability
potential of elements may influence overall costs. Determining specific design elements’
needs for modifiability early in the architecture process reduces costs and saves time overall,
particularly if the modifiability needs to be flexible. We are concerned in this report about
the decisions made about a design fragment at design time. These decisions will affect the
difficulty of making a particular modification to that fragment.

• How is the cost of change measured? Once a change has been specified, the new implemen-
tation must be designed, implemented, tested, and deployed. All of these actions have an as-
sociated cost that can be measured. Our measure of a modification is the cost to make a spe-
cific modification given a particular design fragment. Any tactic based on coupling and
cohesion will be used during design time to lower the cost of a subsequent change at modifi-
cation time. Other factors that we might consider include the cost of implementing a tactic,
the opportunity cost of not being able to use the money spent on implementing the tactic for
other purposes during the period between design time and modification time, the probability

 SOFTWARE ENGINEERING INSTITUTE | 7

Responsibilities
• A responsibility is an action, knowledge to be maintained, or a decision to be

carried out by a software system or an element of that system. [Bachmann, Bass,
Nord]

• Responsibilities are assigned to modules

• But what is the cost of modifying a responsibility?

• Responsibilities can be coupled: a modification to one can result in a
modification to the other

Coupling
• Cost of modifying module A depends on how tightly-coupled it is to other

modules

• Idea: reducing coupling may reduce modification costs

• To reduce coupling:

• Minimze relationships among elements not in the same module

• Maximize relationships among elements in the same module

Cohesion

• Put related responsibilities in the same module

• To maximize modifiability, maximize cohesion & minimize coupling

Tactics
• Reducing the cost of modifying a single responsibility

• Split a Responsibility.
• Increasing cohesion

• Maintain Semantic Coherence.
• Abstract Common Services.

• Reducing coupling
• Use Encapsulation.
• Use a Wrapper.
• Raise the Abstraction Level.
• Use an Intermediary.
• Restrict Communication Paths.

Tactic 1: Split a Responsibility
• Goal: split so the new

modules can be
modified
independently

• Also: enables
deferred binding
(replace module A''
at runtime)

Figure 3 shows Responsibility A before and after it is split. For simplicity in the graphics, we
show the coupling as symmetric; however, recall that the coupling could have different strengths
depending on its direction.

SA’’xSA’x SAx

A

Figure 3: Responsibility A is Divided into Two Portions A’ and A’’ 2

One common criterion for splitting a responsibility is that the children of the responsibility can be
modified independently. Splitting a responsibility using this criterion reduces the cost of a modifi-
cation, since only a portion of the initial responsibility has to be modified in response to a modifi-
cation request.

Deferred bindings enabled by this tactic: Consider the following situation in which a modifica-
tion specification affects a particular responsibility, and the designer decides to allow the modifi-
cation at runtime. The responsibility to be modified is then typically split into two responsibilities:
one performs the activity being split and the other manages the runtime activities to support a re-
quest for the modification. Many deferred binding tactics that are bound prior to deployment time
assume that the correct responsibilities have been split from the overall responsibilities. More
specifically, the following list identifies the types of responsibilities that have been separated from
the overall responsibilities to enable the particular deferred binding. Those tactics that reflect in-
creased generality, such as parameterizing modules or using configuration time bindings, assume
that additional responsibilities are added to the initial set of responsibilities and will be considered
later.

The bindings enabled by this tactic include

• Use Aspect-Oriented Programming. Aspect-Oriented Programming depends on identifying
aspects that are woven into the remainder of the code. These aspects must be split from the
remaining responsibilities.

2 Each portion is assigned to a new module and has its own strength of coupling to other responsibilties.

A’’A’ Key:

Strength of
coupling

Module SA’’A’

Before After

 SOFTWARE ENGINEERING INSTITUTE | 15

Tactic 2: Increase Cohesion
• Idea: move responsibilities from one module to another

• Approach: put A' and B' in the same module

• Use Polymorphism. Polymorphism depends on identifying the responsibilities that are com-
mon to a set of services and splitting them from the total set of responsibilities for a system.

• Use Component Replacement. Replacing components at bind time depends on the common
set of responsibilities being split from the responsibilities of each component. The compo-
nent responsibilities are those that are specific for the particular system being built.

6.2 INCREASING COHESION

Several tactics involve moving responsibilities from one module to another. As we discussed
when we described cohesion, the purpose of moving a responsibility from one module to another
is to reduce the likelihood of side effects to other responsibilities in the original module.

We are assuming that a modification is specified in enough detail to allow the identification of
responsibilities A and B as the responsibilities that will be affected by the modification.

In general, the actions of tactics that move responsibilities follow Figure 4. The various tactics
that we will discuss operate on responsibilities A and B in the figure. A is split into A’ and A’’,
and B is split into B’ and B’’. A’ and B’ are then collocated in a single module. Specifically, the
tactics make the following transformations to the architecture:

• First, they split responsibilities A and B into the portions to be moved (A’ and B’) and the
portions to remain (A’’ and B’’).

• Then they create a new module and assign A’ and B’ to it.

Key:

Strength of
coupling

Module

SB’’x

A’’

SA’B’x

SB’’,A’B’

B’’

A’, B’

SA’’x

B A

sAx SBx

SA’’,A’B’

After Before

Figure 4: Application of a Tactic to Increase Cohesion3

3 Responsibility A is split into A’ and A’’, responsibility B is split into B’ and B”, and A’ and B’ are placed into a new
module. The interface for the module containing A’ and B’ is not shown.

16 | CMU/SEI-2007-TR-002

But: How Do We Split a Module?

• 2.1: maintain semantic coherence (A', B' may need to change in the
future)

• 2.2: abstract common services (A', B' represent similar services)

Tactic 3: Reduce Coupling
• 3.1: Use encapsulation (hide information in A)

B C D E

Figure 5: Modules Accessing Module A Prior to Encapsulating A

Figure 6 shows the situation after A has been encapsulated.

Figure 6: Encapsulating A Introduces an Interface.5

5 The couplings from outside to the interface are unchanged, but the couplings to A are reduced. There is also

strong coupling between A and the interface of A and low coupling in the other direction.

SAE SAB SAC SAD

Key:

A
Module

Strength of
coupling

Sinterface A

A

B C D E

SAB SAC SAD SAE

Key:

Module

Strength of
coupling

Interface

 SOFTWARE ENGINEERING INSTITUTE | 19

B C D E

Figure 5: Modules Accessing Module A Prior to Encapsulating A

Figure 6 shows the situation after A has been encapsulated.

Figure 6: Encapsulating A Introduces an Interface.5

5 The couplings from outside to the interface are unchanged, but the couplings to A are reduced. There is also

strong coupling between A and the interface of A and low coupling in the other direction.

SAE SAB SAC SAD

Key:

A
Module

Strength of
coupling

Sinterface A

A

B C D E

SAB SAC SAD SAE

Key:

Module

Strength of
coupling

Interface

 SOFTWARE ENGINEERING INSTITUTE | 19

Before After

Add a Wrapper

• Encapsulation hides information

• Wrappers transform invocations

• (yes, the boundary is fuzzy)

Raise the Abstraction Level

• Usually: add parameters to interface

• Makes the module more abstract, enables flexibility

Use an Intermediary, Restrict Communication
Paths

• Break dependency (but add a new one instead)

• Create a new responsibility to act as the intermediary, and create a new module for it.

• Delete the strength of coupling between A and B. Replace it with a strength of coupling be-
tween A and the intermediate module and a strength of coupling between the intermediate
module and B.

Figure 7 shows modules A and B before and after the Use an Intermediary tactic is applied.

Deferred bindings enabled by this tactic: This tactic allows several different forms of deferred
binding, which all involve breaking different forms of dependencies:

• Use Name Servers. The location of a service can be determined by using an intermediary for
registering the service and allowing this location to be discovered.

• Use Plug-Ins. The interpretation of a bit stream can be bound at runtime by having an inter-
mediary that determines the type of the bit stream and binds it to a component that can inter-
pret the bit stream.

• Use Publisher-Subscriber. Producers can be coupled to consumers at link time or at runtime
through different versions of Publisher-Subscriber intermediaries.

Before After

SAB

A

B

B

SBx

Intermediary

SB intermediary

SA intermediary

Key:

Strength of
coupling

Module

A

SBx

SAx SAx

Figure 7: Modules A and B Before and After Applying an Intermediary Tactic

22 | CMU/SEI-2007-TR-002

