

Introduction to Software
Architecture

Michael Coblenz

Slide credit: Michael Hilton at CMU

Learning Goals

● Understand the abstraction level of architectural reasoning
● Appreciate how software systems can be viewed at different abstraction

levels
● Distinguish software architecture from (object-oriented) software design
● Use notation and views to describe the architecture suitable to the

purpose
● Document architectures clearly, without ambiguity

4

Software Architecture

The software architecture of a program or computing system
is the structure or structures of the system, which
comprise software elements, the externally visible
properties of those elements, and the relationships among
them.

 [Bass et al. 2003]

5

Note: this definition is ambivalent to
whether the architecture is known, or

whether it’s any good!

Why Understand Architecture?

• Every system has an architecture

• But if you design the architecture intentionally, it's
likely to be better!

• Let's look at an example

Example: Email Client

IMAP
interface

Email fetch
controller

View
controller

Email
database

New feature request:
flexible email filters.

Example: Email Client

IMAP
interface

Email fetch
controller

View
controller
(with filter
code)

Email
database

Complaint: when new
mail arrives, it takes too
long to update.
Cause: controller re-
filters all mail each time.

Example: Email Client

IMAP
interface

Email fetch
controller

View
controller
(with filter
code)

Email
database

Cache filter results

Complaint: My
emails don't fit on
my phone.

Two Kinds of Requirements
• Functional requirements: what the system should do

• "The system shall enable the user to read email."

• Generally, these are either met or not met (if not met, the system is unacceptable)

• Quality attributes: the degree to which the software works as needed

• "The system shall fetch 1 GB of email in under 1 minute."

• Sometimes called "non-functional requirements"

• Maintainability, modifiability, performance, reliability, security

• Generally, these can be achieved in degrees

Goal: Meet Quality Requirements
• Maintainability / Modifiability

• Performance

• Scalability

• Availability

• Usability

Key lesson: software
architecture is about
selecting a design that
meets the desired
quality attributes.

Software Design vs. Architecture

Levels of Abstraction

● Requirements
○ high-level “what” needs to be done

● Architecture (High-level design)
○ high-level “how”, mid-level “what”

● OO-Design (Low-level design, e.g. design patterns)
○ mid-level “how”, low-level “what”

● Code
○ low-level “how”

Design vs. Architecture

Design Questions

● How do I add a menu item in
VSCode?

● How can I make it easy to add menu
items in VSCode?

● What lock protects this data?

● How does Google rank pages?

● What encoder should I use for secure
communication?

● What is the interface between
objects?

Architectural Questions

● How do I extend VSCode with a
plugin?

● What threads exist and how do they
coordinate?

● How does Google scale to billions of
hits per day?

● Where should I put my firewalls?

● What is the interface between
subsystems?

14

Objects

15

Model

Design Patterns

16

Model
/ Subject

View

Controller

Factory

Observer

Command

Design Patterns

17

Model
/ Subject

View

Controller

Factory

Observer

Command

Design Patterns

18

Model
/ Subject

View

Controller

Factory

Observer

Command

/

/

/

/

Architecture

19

Model
/ Subject

View

Controller

Factory

Observer

Command

/

/

/

/

Architecture

20

Model
/ Subject

View

Controller

Factory

Observer

Command

Architecture

21

Next concept: views

● Often, there's too much information for you to show it all at once.

Why Document Architecture?

● Blueprint for the system
○ Artifact for early analysis
○ Primary carrier of quality attributes
○ Key to post-deployment maintenance and enhancement

● Documentation speaks for the architect, today and 20 years from today
○ As long as the system is built, maintained, and evolved according to its documented

architecture

● Support traceability.

26

Views and Purposes

● Every view should align with a purpose
● Views should only represent information relevant to that purpose

○ Abstract away other details
○ Annotate view to guide understanding where needed

● Different views are suitable for different reasoning aspects (different
quality goals), e.g.,
○ Performance
○ Extensibility
○ Security
○ Scalability
○ …

27

Common Views in Documenting Software Architecture

● Static View
○ Modules (subsystems, structures)

and their relations (dependencies, …)

● Dynamic View
○ Components (processes, runnable entities) and connectors (messages, data flow, …)

● Physical View (Deployment)
○ Hardware structures and their connections

28

Software Architectural Styles

● A style describes a family of architectures
● Each style promotes some quality attributes and inhibits others
● Learning these patterns can enable you to make good architectural

choices
● Important: "pure" styles rarely occur in practice
● But I will teach them as pure so we can study them individually
● Each style includes:

● Components
● Connectors that describe relationships between components

1. Pipes and Filters (one style in the "data flow" family of styles)

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

Example:
Compilers

Example: UNIX pipes

● Filters: processes
● Ports: stdin, stdout, stderr

● Pipes: buffered streams
● Pipes carry byte streams (usually assume: UTF-8 strings)

Pipes vs. Procedures

Pipes Procedures

Arity Binary Binary

Control Asynchronous, data-driven Synchronous, blocking

Semantics Functional Hierarchical

Data Streamed Parameter/return value

Variations Buffering, end-of-file
behavior

Binding time, exception
handling, polymorphism

Table from David Garlan

Analysis

● Quality attributes promoted:
● Modifiability: can insert or remove filters
● Modifiability: can redirect pipes
● Reuse
● Performance: enables parallel computation

● Quality attributes inhibited:
● Usability: hard to build interactive applications this way
● Performance: may have to translate data to be sent on pipes
● Cost: writing filters may be complex due to common pipe data

format
● In some cases, correctness, if need to synchronize across pipes

