
 Testing
Program testing can be used to show the presence of bugs,
but never to show their absence! -- Edsger Dijkstra

1

Slide credit for this deck: both William Griswold (UCSD) and Michael Hilton (CMU)

Why now?
Practicality: testing assignment is out today

(because I want to reserve time later for project
work)

Writing tests can help hone specifications

See literature on test-driven development

TDD may improve quality, but may cost time
(studies conflict)

2

F. Shull, G. Melnik, B. Turhan, L. Layman, M. Diep and H. Erdogmus, "What Do We Know about Test-Driven Development?," in IEEE Software, vol. 27, no. 6, pp. 16-19, Nov.-Dec. 2010, doi: 10.1109/MS.2010.152.

What makes a good test suite?
You tell me.

3

Defining correct behavior
Example-based: “For a given input, some assertions should be true”

Properties: “Output should should satisfy some property for all inputs
in some class"

“It doesn’t crash”

Invariance: “Changing the input in some way should maintain the
same output”

Regression: “It provides the same output as it used to”

Differential: “Two systems implementing the same spec should
provide the same output”

Human oracle: “For a given user, they should be satisfied”
4Slide credit: adapted from Jonathan Bell (CC BY-SA)

The Many Purposes of Testing
Find bugs

Hard to prove of the absence of bugs (Dijkstra)

Prevent bugs from sneaking in during enhancement
(Regression Testing)
Loose synchronization among developers/teams can result in

incorrect use or enhancement of existing code

Give high confidence in the integrity of your product

Explore class/method design (Test-First/Test-Driven
Development and/or DbC)

Specification of expected behavior

5

Not only are tests used to
drive software design, but
we design our software for
testing (later in this
lecture).

Key vocabulary
Unit testing is a form of software testing by which

isolated source code is tested to validate expected
behavior. (Kolawa)

Integration testing tests the behavior of large
software components.

6

The THREE BIG IDEAS of Software Testing
Coverage: Seek to execute all possibilities.

 (but does running a line mean you've "covered" it?)

Test Equivalence Classes:

Tests should all cover different things.

	 That’s still too many, so…

Bottom-Up Testing: When testing if something works, its parts
should already be tested. We test just the current level,
reducing the explosion of combinations.

7

Bottom-Up Testing and the Hierarchical Structure of
Agile Planning and Delivery

8

 Story Testing (features)
 (acceptance criteria)

 Acceptance Testing
 (customer demo, End-to-End Scenarios)

 User, System Testing
 (perf, robustness, user experience)
 (i.e., End-to-End Scenarios + Personas)

 Unit Testing (methods)
 (black/gray/white box)

Each level of testing assumes all the lower levels of
tests have passed. Only test for the “current-level” risk.

For example, Iteration testing
assumes that the individual
Stories/Features work, and tests
how the Stories glue together.

Milestone 1

Iteration
1

Iteration
2

Iteration n…

US 1 US 2 US 3 US 4 US 5 US 6 US 7

…

Project

T1 T2 T3 T1 T2 T1 T2 T1 T2 T3…

Black box vs. white box testing
Black box testing: do not look inside the component being

tested.

Pro: not biased by implementation details

Con: can't leverage opportunities

White box testing: consider the implementation of the
component being tested.

Pro: exploit possible weaknesses

Con: may miss "impossible" bugs

Gray box testing: somewhere in the middle
9

Agile Testing: Hierarchical, Diverse (80/20)
Write three kinds of tests, bottom up:

1. Task level: Unit tests for critical units (black-box and/or white-
box)

2. Story/Iteration-level
Automating all could be expensive; some by hand

3. Iteration/Milestone-level: End-to-end Scenario tests
Additionally consider Personas, platforms/configurations, real

people

Diversification beyond the hierarchy:
Asserts from design by contract
Logging for hard-to-test code (grey-box)

10

Include time for testing during Planning
Write tests for high-risk units

For each story, have a testing task

Could have two: one for writing tests, one for passing

For a sprint, have a testing Story or “loose” Task
This is a “Developer Story”: As a developer, I want…
End-to-End Scenarios, e.g.

For Milestone, have a testing Iteration or loose Story/
Task
longer End-to-End Scenarios, e.g.

11

Testing early-stage software
You want to test module A

But A depends on module B.

Module B isn't ready yet.

What do?

12

A B

Another situation
Want to test code that depends on the current time

Or the network

Or the disk

Now what?

13

Solution: mocking
New class: MockCalendar
class MockCalendar extends Calendar {	
 long millis;	
 MockCalendar(long millis) {this.millis = millis;}	
 static MockCalendar getInstance()	
 	 	 	 { return new MockCalendar(millis); }	
 long getTimeInMillis() { return millis; }	
 void setTimeInMillis(long ms) { millis = ms; }	
 … // Lots of stubbed methods that we don’t use	
}	

Pass MockCalendar instance into code to be tested.

14

Advanced Testing
Or: how to avoid writing tests manually (sometimes). Credit: CMU S3D (Michael Hilton)

15

Puzzle: Find x such p1(x) returns True

def p1(x):	
 if x * x – 10 == 15:	
 return True	
 return False

16

Puzzle: Find x such p2(x) returns True

def p2(x): 	
 if x > 0 and x < 1000:	
 if ((x - 32) * 5/9 == 100):	
 return True	
 return False

17

Puzzle: Find x such p3(x) returns True

def p3(x):	
 if x > 3 and x < 100:	
 z = x - 2	
 c = 0	
 while z >= 2:	
 if z ** (x - 1) % x == 1:	
 c = c + 1	
 z = z - 1	
 if c == x - 3:	
 return True	
 return False

18

Security and Robustness

19

Fuzz Testing

20

Communications of the ACM (1990)

“

”

Fuzz Testing

21

Input ProgramExecute
w0o19[a%#

A 1990 study found crashes
in:
adb, as, bc, cb, col, diction,
emacs, eqn, ftp, indent, lex,
look, m4, make, nroff, plot,
prolog, ptx, refer!, spell, style,
tsort, uniq, vgrind, vi

/dev/random

Common Fuzzer-Found Bugs in C/C++

Causes: incorrect arg validation, incorrect type
casting, executing untrusted code, etc.

Effects: buffer-overflows, memory leak, division-by-
zero, use-after-free, assertion violation, etc. (“crash”)

Impact: security, reliability, performance,
correctness

But: bugs don't always result in crashes.

int *x = malloc(sizeof(int));
free(x);
printf("%d", *x);

How do you make programs “crash” when a bug is encountered?

Automatic Oracles: Sanitizers

● Address Sanitizer (ASAN) ***
● LeakSanitizer (comes with ASAN)
● Thread Sanitizer (TSAN)
● Undefined-behavior Sanitizer (UBSAN)

https://github.com/google/sanitizers

https://github.com/google/sanitizers

AddressSanitizer

int get_element(int* a, int i) {	
 return a[i];	
}

Compile with `clang –fsanitize=address`

AddressSanitizer

int get_element(int* a, int i) {	
 return a[i];	
}

int get_element(int* a, int i) {	
 if (a == NULL) abort(); 	
 return a[i];	
}

Is it null?

Compile with `clang –fsanitize=address`

AddressSanitizer

int get_element(int* a, int i) {	
 return a[i];	
}

int get_element(int* a, int i) {	
 if (a == NULL) abort(); 	
 region = get_allocation(a);	
 if (in_heap(region)) {	
 low, high = get_bounds(region);	
 if ((a + i) < low || (a +i) > high) {	
 abort();	
 }	
 }	
 return a[i];	
}

Is the access out of bounds?

Compile with `clang –fsanitize=address`

AddressSanitizer

int get_element(int* a, int i) {	
 if (a == NULL) abort(); 	
 region = get_allocation(a);	
 if (in_stack(region)) { 	
 if (popped(region)) abort();	
 …	
 }	
 if (in_heap(region)) { ... }	
 return a[i];	
}

Is this a reference to a stack-allocated variable after return?

Compile with `clang –fsanitize=address`

AddressSanitizer

Asan is a memory error detector for C/C++. It finds:
○ Use after free (dangling pointer dereference)
○ Heap buffer overflow
○ Stack buffer overflow
○ Global buffer overflow
○ Use after return
○ Use after scope
○ Initialization order bugs
○ Memory leaks

https://github.com/google/sanitizers/wiki/AddressSanitizer

Slowdown about 2x on SPEC CPU 2006

Strengths and Limitations

● Strengths:
○ Cheap to generate inputs

○ Easy to debug when a failure is identified

● Limitations:
○ Randomly generated inputs don’t make sense most of the time.

■ E.g. Imagine testing a browser and providing some ”input”
HTML randomly: dgsad5135o gsd;gj lsdkg3125j@!
T%#(W+123sd asf j

○ Unlikely to exercise interesting behavior in the web browser

○ Can take a long time to find bugs. Not sure when to stop.

30

Sanitizers…

A.Can be relied on to find most bugs that pertain to
undefined behavior.

B.Only work when test cases execute dangerous
codepaths.

C.Impose only trivial runtime overhead, so they can be
used in production.

D.Intervene at run time to avoid bad behavior.
E.Remove sensitive data, such as passwords, from

outputs.

Mutation-Based Fuzzing (e.g. Radamsa)

32

InputPick
Input’

Random
Mutation

Program
ExecuteInitial

Input

Input

Input

Input

Seeds <foo></foo>

<woo>?</oo>

Mutation Heuristics
▪ Binary input

▪ Bit flips, byte flips
▪ Change random bytes
▪ Insert random byte chunks
▪ Delete random byte chunks
▪ Set randomly chosen byte chunks to interesting values e.g. INT_MAX, INT_MIN, 0, 1, -1, …

▪ Text input
▪ Insert random symbols relevant to format (e.g. “<“ and “>” for xml)
▪ Insert keywords from a dictionary (e.g. “<project>” for Maven POM.xml)

▪ GUI input
▪ Change targets of clicks
▪ Change type of clicks
▪ Select different buttons
▪ Change text to be entered in forms
▪ … Much harder to design

Coverage-Guided Fuzzing (e.g. AFL)

Save?

Execution feedback

No

Yes

Add
Input’

Coverage
Instrumentation

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
New

branch
coverage?

34

InputPick Input’

Random
Mutation

Program
ExecuteInitial

Input

Input

Input

Input

Seeds <foo></foo>

<woo>?</oo>

Coverage-Guided Fuzzing with AFL

35

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

ClusterFuzz @ Chromium

Property-based testing
Manually writing tests:

- work

- requires creativity

- biased toward your expectations of where bugs
are

+ precise (test relevant use cases)

+ can test basically anything
37

Can we generate lots of tests?
First, write down a property that a function should have, and a range:

@given(s.integers(min_value=-(10 ** 6), max_value=10 ** 6))

def test_factorize_multiplication_property(n):

 """The product of the integers returned by factorize(n) needs to be n."""

 factors = factorize(n)

 product = 1

 for factor in factors:

 product *= factor

 assert product == n, f"factorize({n}) returned {factors}"

38

Then, run Hypothesis, which searches the space…

39

Oops! factorize(5)
returned an empty list of
factors!

Generating tests
Mutate existing "interesting" inputs

e.g. apply transformations to images

Can you relate input transformations to output
transformations?

Rotate input -> expect rotated output

40
Slide credit: adapted from Jonathan Bell (CC BY-SA)

Regression Testing
Goal: know if something changed

Try snapshot tests

First time: record output

Later: compare output to saved output

Useful with GUIs, API testing

41
Slide credit: adapted from Jonathan Bell (CC BY-SA)

Testing user interfaces
Need humans!

Could try A/B tests to see if a real change impacts
users

42
Slide credit: adapted from Jonathan Bell (CC BY-SA)

Avoiding Flaky Tests
Ensure a consistent starting configuration

Ensure consistent cleanup

Test order dependencies

Control asynchronous startup

43

Server Client

Start

Ready

Wait 3 secs for server to start

Make request to server

No response. Test failed!

Slide credit: adapted from Jonathan Bell (CC BY-SA)

