
1



Iteration in Software Development
Slides adapted from CMU 17-313 (credit to Michael Hilton and others)



Learning Goals
• Today:

• Recognize the importance of process

• Understand the difficulty of measuring progress

• Identify why software development has project characteristics

• Use milestones for planning and progress measurement



Process and Methods

• Process: "determines the order of the stages involved in software 
development and evolution" (Boehm)

• Method: "focus is on how to navigate through each phase 
(determining data, control, or ‘‘uses” hierarchies; partitioning functions; 
allocating requirements) and how to represent phase products." 
(Boehm)



The "Code and Fix" Model

• How many of you used this in your last software project?

• Like wandering in the darkness, there's no plan

• No way to prioritize important fixes over unimportant ones

• No way to manage risks



Process Models
• Waterfall model:

• Establish requirements up front

• Spiral model:

• Use a series of prototypes to address risks

• Agile:

• Frequent interactions with users/customers reduces risk faster





How To Develop Software?
1. Discuss the software that needs to be written

2. Write some code

3. Test the code to identify the defects

4. Debug to find causes of defects

5. Fix the defects

6. If not done, return to step 1



Percent	
of 	
Effort

TimeProject	
beginning

Project	
end

100%

0%

Productive Development	
(coding, testing, making progress towards goals)



Percent	
of 	
Effort

TimeProject	
beginning

Project	
end

100%

0%

Productive Development	
(coding, testing, making progress towards goals)

Addressing Inefficiencies



Your Manager Asks You To Follow a Process
• Writing down all requirements

• Require approval for all changes to requirements

• Use version control for all changes

• Track all reported bugs

• Review requirements and code

• Break down development into smaller tasks and schedule and monitor them

• Planning and conducting quality assurance 

• Have daily status meetings

• Use Docker containers to push code between developers and operation



Percent	
of 	
Effort

TimeProject	
beginning

Project	
end

100%

0%

Productive Development	
(coding, testing, making progress towards goals)

Addressing Inefficiencies

Process: Cost and Time estimates, Writing 
Requirements, Design, 	

Change Management, Quality Assurance Plan, 	
Development and Integration Plan



Percent	
of 	
Effort

TimeProject	
beginning

Project	
end

100%

0%
Process

Productive Development	
(coding, testing, making progress towards goals)

Fighting Fires / Addressing Inefficiencies



Example Process Issues
• Change Control: Mid-project informal agreement to changes suggested by customer or manager. 

Project scope expands 25-50%

• Quality Assurance: Late detection of requirements and design issues. Test-debug-reimplement 
cycle limits development of new features. Release with known defects.

• Defect Tracking: Bug reports collected informally, forgotten

• System Integration: Integration of independently developed components at the very end of the 
project. Interfaces out of sync.

• Source Code Control: Accidentally overwritten changes, lost work.

• Scheduling: When project is behind, developers are asked weekly for new estimates.



Percent	
of 	
Effort

TimeProject	
beginning

Project	
end

100%

0% Process

Hypothesis: Process 
increases flexibility and 
efficiency	
	
Ideal Curve: Upfront 
investment for later 
greater returns	

Productive Development	
(coding, testing, making progress towards goals)

Fighting Fires / Addressing Inefficiencies





Planning



Time Estimation

https://xkcd.com/612/



Activity: Estimate Time

Task A: Simple web version of the Monopoly 
board game with San Diego street names

Team: just you 

Task B: Bank smartphone app 
Team: you with team of 4 developers, one 
experienced with iPhone apps, one with 
background in security

* Estimate in 8h days (20 work days in a 
month, 220 per year)

My Task A estimate: ___	
My Task B estimate: ___	

Other Task A estimate: __	
Other Task B estimate: __	

Other Task A estimate: __	
Other Task B estimate: __



Revise Time Estimate

• Do you have comparable experience to base an estimate off of? 

• How much design do you need for each task? 

• Break down the task into ~5 smaller tasks and estimate them. 

• Revise your overall estimate if necessary



π



Measuring Progress?

• “I’m almost done with the app. The frontend is almost fully 
implemented. The backend is fully finished except for the one stupid 
bug that keeps crashing the server. I only need to find the one stupid 
bug, but that can probably be done in an afternoon. We should be 
ready to release next week.”



Measuring Progress?

• Developer judgment: x% done

• Lines of code?

• Functionality?

• Quality?





Milestones and Deliverables Make Progress Observable

Milestone: clear end point of a (sub)tasks	
• For project manager
• Reports, prototypes, completed subprojects
• "80% done" not a suitable milestone

Deliverable: Result for customer	
• Similar to milestone, but for customers
• Reports, prototypes, completed subsystems



Waterfall Model Was the Original Software Process

Waterfall diagram CC-BY 3.0  Paulsmith99 at en.wikipedia

https://en.wikipedia.org/wiki/User:Paulsmith99
https://en.wikipedia.org/


… Akin to Processes Pioneered in Mass Manufacturing (E.G., 
By Ford)



Lean Production Adapts to Variable Demand

Toyota Production System (TPS)
Build only what is needed, only when it is needed. 
Use the “pull” system to avoid overproduction. (Kanban) 
Stop to fix problems, to get quality right from the start (Jidoka)
Workers are multi-skilled and understand the whole process; take ownership

Lots of software buzzwords invented recently build on these ideas
Just-in-time, DevOps, Shift-Left

Taiichi Ohno

See also: “The machine that changed the world” by James P Womack et al. The Free Press, 2007.	



US vehicle sales market share; 1961—2016 (source: knoema.com)



Agile



Agile Overview
• Keep a prioritized list of user stories in a backlog

• The product owner sets priorities of backlog items

• Divide work into sprints (often, two weeks long)

• Conceptually: at end of each sprint, you could ship

• The scrum master keeps the process on track

• Removes barriers to success



Sprint Structure
• Start with a planning meeting

• First, estimate user stories

• Then, commit to user stories individually

• Every day: standup meeting

• What did I do yesterday?

• What will I do today?

• Am I stuck?

• Then: sprint review and sprint retrospective



Sprint Review

• For each user story: demo!

• If acceptance criteria achieved, great.

• Otherwise, user story goes back on the backlog.



Sprint Retrospective

• Discuss how the sprint went

• Refine interactions, processes, tools

• Identify and solve problems

• Decide on changes to improve effectiveness


