
Code Review

Testing has Limitations

¤Costly to get 100% coverage (all code / behaviors)
¤80/20 rule!

¤Not all properties can be checked at runtime
¤Good design?
¤Simple implementation? Understandable code?
¤Follows coding conventions?
¤UI looks as intended? Follows UI guidelines?
¤Are the tests adequate (coverage, kind)?

2

Code Review
¤Systematic reading or examination of the code

¤Focused on what can’t be tested (cost-benefit)

¤Sometimes done in pairs or groups, often asynchronous
¤at least one is non-author

(authors are blind to flaws in their code)
¤find & work through more complex problems (e.g., design)
¤promote learning and knowledge transfer (not just QA!)
¤super valuable for “onboarding” new devs
¤pair programming is instantaneous code review

3

Motivations and Benefits (Bacchelli et al.)

4

but also for the team and the entire development process. In
this vein, one senior developer’s comment summarized many
of the responses: “[code review] also has several beneficial
influences: (1) makes people less protective about their code,
(2) gives another person insight into the code, so there is
(3) better sharing of information across the team, (4) helps
support coding conventions on the team, and [...] (5) helps
improving the overall process and quality of code. ”

Through the card sort on both meetings and code review
comments, we found several references to motivations for code
review and identified six main topics. To complete this list,
in the survey for managers, we included an open question on
why they perform code reviews in their team. We analyzed
the responses to create a comprehensive list of high-level
motivations. We included this list in the developers’ survey and
asked them to rank the top three main reasons that described
why they do code reviews.

In the rest of this section, we discuss the motivations that
emerged as the most prominent. We order them according to
the importance they were given by the 873 developers and
testers who responded to the final survey.

A. Finding Defects
One interviewed senior tester explains that he performs code

reviews because they “are a great source of bugs;” he goes
even further stating: “sometimes code reviews are a cheaper
form of bug finding than testing.” Moreover, the tool seems not
to have an impact on this main motivation: “using CodeFlow
or using any other tool makes a little difference to us; it’s
more about being able to identify flaws in the logic.”

Almost all the managers included finding defects as one of
the reasons for doing code reviews; for 44% of the managers, it
is the top reason. Managers considered defects to be both low
level issues (e.g., “correct logic is in place”) and high level
concerns (e.g., “catch errors in design”). Concerning surveyed
developers/testers, finding defects is the first motivation for code
review for 383 of the programmers (44%), second motivation
for 204 (23%), and third for 96 (11%).

This is in-line with the reason why code inspections were
devised in the first place: reducing software defects [2].

Nevertheless, even though finding defects emerged from
our data as a strong motivation (the first for almost half of
the programmers and managers), interviews and survey results
indicate that this only tells part of the story of why practitioners
do code reviews and the outcomes they expect.

B. Code Improvement
Code improvements are comments or changes about code

in terms of readability, commenting, consistency, dead code
removal, etc., but do not involve correctness or defects.

Programmers ranked code improvement as an important
motivation for code review, close to finding defects: This is the
primary motivation for 337 (39%) programmers, the second
for 208 (24%), and the third for 135 (15%). Managers reported
code improvement as their primary motivation in 51 (31%)
cases. One manager wrote how code review in her view is a

Ranked Motivations From Developers

Responses

Team Assessment

Track Rationale

Avoid Build Breaks

Share Code Ownership

Improving Dev Process

Team Awareness

Knowledge Transfer

Alternative Solutions

Code Improvement

Finding defects

0 200 400 600

Top Second Third

Fig. 3. Developers’ motivations for code review.

“discipline of explaining your code to your peers [that] drives
a higher standard of coding. I think the process is even more
important than the result.”

Most interviewed programmers mentioned that at least one
of the reviewers involved in each code review takes care
of checking whether the code follows the team conventions,
for example in terms of code formatting and in terms of
function and variable naming. Some programmers use a “code
improvement” check as a first step when doing code review:
“the first basic pass on the code is to check whether it is
standard across the team.”

The interviews also gave us a glimpse of the connection
between the quality of code reviews and code improvement
comments. Such comments seem easier to write and sometimes
interviewees mentioned them as the way reviewers use to avoid
spending time to conduct good code reviews. An observation
by a senior developer, in the company for more than nine years,
summarizes the opinions we received from many interviewees:
“I’ve seen quite a few code reviews where someone commented
on formatting while missing the fact that there were security
issues or data model issues.”

C. Alternative Solutions

Alternative solutions regard changes and comments on
improving the submitted code by adopting an idea that leads to
a better implementation. This is one of the few motivations in
which developers and managers do not agree. While 147 (17%)
developers put this as the first motivation, 202 (23%) as the
second, and 152 (17%) as the third, only 4 (2%) managers
even mentioned it (e.g., “Generate better ideas, alternative
approaches” and “Collective wisdom: Someone else on the
project may have a better idea to solve a problem”). The
outcome of the interviews was similar to the position of
managers: Interviewees vaguely mentioned this motivation,
and mostly in terms of generic “better ways to do things.”

D. Knowledge Transfer

All the interviewees but one motivated their code reviews
also from a learning—or knowledge transfer—perspective. With
the words of a senior developer: “one of the things that should

716

Comments in each Category

Percentage of Comments

Misc

Knowledge Transfer

Review Tool

Testing

External Impact

Defects

Social Communication

Understanding

Code Improvement

0% 10% 20% 30%

Fig. 4. Proportion of comments by card sort category.

Although motivations are well defined, we still have to verify
whether they actually translate into real outcomes of a modern
code review process.

V. THE OUTCOMES OF CODE REVIEWS

A. Motivations vs. Outcomes
Our second research question seeks to understand what

the actual outcomes of code reviews are, and whether they
match the motivations and expectations outlined in the previous
section. To that end, we conducted indirect field research [24]
by analyzing the content of 200 threads (corresponding to
570 comments) recorded by CodeFlow. Figure 4 shows the
categories of comments found through the card sort.

Code Improvements: The most frequent category, with
165 (29%) comments, is code improvements. In detail, among
code improvements comments we find 58 on using better code
practices, 55 on removing not necessary or unused code, and
52 on improving code readability.

Defect Finding: Although defect finding is the top mo-
tivation and expected outcome of code review for many
practitioners, the category defect is the only the fourth most
frequent, out of nine items, with 78 (14%) comments. Among
defect comments, 65 are on logical issues (e.g., a wrong
expression in an if clause), 6 on high-level issues, 5 on security,
and 3 on wrong exception handling.

Knowledge Transfer: Concerning the other expected out-
comes of code reviews, we did not expect to find evidence
about them, because of their more “social”–thus harder to
quantifynature. Nevertheless, we found some (12) comments
specifically about knowledge transfer, where the reviewers
were directing the code change author to external resources
(e.g., internal documentation or websites) for learning how to
tackle some issues. This provides additional evidence on the
importance of this aspect of reviews.

B. Finding Defects: When Expectations Do Not Meet Reality
Why do we see this significant gap in frequency between

code improvements and defects comments? Possible reasons
may be that our sample of 570 comments is too small to
represent the population, that the submitted changes might

require less need fixing of “real” defects than of small
code improvements, or that programmers could consider code
improvements as actual defects. However, by triangulating these
numbers with the interview discussions, the survey answers,
and the other categories of comments, another reason seems
to justify this situation. First, we start by noting that most
of the comments on defects regard uncomplicated logical
errors, e.g., corner cases, common configuration values, or
operator precedence. Then, from interview data, we see that:
(1) most interviewees explained how, with tool-based code
reviews, most of the found defects regard “logic issues–where
the author might not have considered a particular or corner
case”; (2) some interviewees complained that the quality of
code reviews is low, because reviewers only look for easy errors:
“[Some reviewers] focus on formatting mistakes because they
are easy [...], but it doesn’t really help. [...] In some ways it’s
kind of embarrassing if someone asks you to do a code review
and all you can find are formatting mistakes when there are
real mistakes to be found”; and (3) other interviewees admitted
that if the code is not among their codebase, they look at
“obvious bugs (such as, exception handling).” Finally, managers
mentioned “catching early obvious bugs” or “finding obvious
inefficiencies or errors” as reasons for doing code review.
These points illustrate that the reason for the gap between the
number of comments on code improvements and on defects is
not to be found in problems in the sample or in classification
misconceptions, but it is rather just additional corroborating
evidence that the outcome of code review does not match the
main expectation of both programmers and managersfinding
defects. Review comments about defects are few, comprising
one-eighth of the total in our sample, and mostly address
“micro” level and superficial concerns; while programmers and
managers would expect more insightful remarks on conceptual
and design level issues. Why does this happen? The high
frequency of understanding comments hints at the answer to
our question, addressed in the next section.

VI. WHAT ARE THE CHALLENGES OF CODE REVIEW?

Our third research question seeks to understand the main
challenges faced by reviewers when performing modern code
reviews, also with respect to the expected outcomes. We also
seek to uncover the reasons behind the mismatch between
expectations and actual outcomes on finding defects in reviews.

A. Code Review is Understanding

Even though we did not ask any specific question concerning
understanding, the theme emerged clearly from our interviews.
Many interviewees eventually acknowledged that understanding
is their main challenge when doing code reviews. For example,
a senior developer autonomously explained to us: “the most
difficult thing when doing a code review is understanding the
reason of the change;” a tester, in the same vein: “the biggest
information need in code review: what instigated the change;”
and another senior developer: “in a successful code review
submission the author is sure that his peers understand and
approve the change.” Although the textual description should

718

Benefits of code review
(according to analysis of 200
code threads)Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and challenges of modern code review.

In Proceedings of the 2013 International Conference on Software Engineering (ICSE '13). IEEE Press, 712–721.

Code Review at Google
¤Each directory is owned by certain people

¤An owner must review and approve changes

¤"Readability": ensure consistent style

¤Developers can be certified for individual languages

¤Every change must be written or reviewed by
someone with "readability" certification in the
appropriate language

5

Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern code review: a case study at google. In Proceedings of the 40th International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP '18). https://doi.org/10.1145/3183519.3183525

Google Process

1. Create a change

2. Authors preview results of static analyzers

3. Reviewers write comments; unresolved comments
must be addressed

4. Addressing feedback: author changes code or
replies to comments

5. Approving: reviewers mark "LGTM"

6

Stats

¤Median developer authors about 3 changes a week

¤80 percent of authors make fewer than 7 changes a
week

¤Median is 4 reviewers/developer

¤80 percent of reviewers review fewer than 10
changes a week.

¤Median time: < 1 hour for small changes, about 5
hours for very large changes. All changes: 4 hours.

7

More Google stats

¤> 35% of changes only modify one file

¤90% modify < 10 files

¤10% modify one line of code

¤Median number of lines: 24

8

Perspective

¤The code is the team's code, not your code

¤Use "we" language, not "you" language

¤Avoid blame

¤"you have a bug here" -> "this code might be
buggy"

¤"What if…"

9

Review breakdowns (what not to do)

¤Tone (people are sensitive)

¤Power (use reviews to induce unrelated behavior)

¤Subject: is this the right place to do design?

¤Context: why are we doing this?

10

Newbies write more comments

11

Modern Code Review: A Case Study at Google ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

edited/reviewed the files under review. This corroborates
recent research that frequent reviewers make large contribu-
tions to the evolution of modules and should be included
along with frequent editors [40]. Detecting the right reviewer
does not seem problematic in practice at Google, in fact the
model of recommendation implemented is straightforward
since it can programmatically identify owners. This is in
contrast with other proposed tools that identify reviewers
who have reviewed files with similar names [43] or take into
account such features as the number of comments included
in reviews [42]. At Google, there is also a focus on dealing
with reviewers’ workload and temporary absences (in line
with a study at Microsoft [4]).

Static Analysis integration. A qualitative study of 88 Mozilla
developers [26] found that static analysis integration was the
most commonly-requested feature for code review. Auto-
mated analyses allow reviewers to focus on the understand-
ability and maintainability of changes, instead of getting
distracted by trivial comments (e.g., about formatting). Our
investigation at Google showed us the practical implications
of having static analysis integration in a code review tool. Cri-

tique integrates feedback channels for analysis writers [36]:
Reviewers have the option to click “Please fix” on an analysis-
generated comment as a signal that the author should fix the
issue, and either authors or reviewers can click “Not useful”
in order to flag an analysis result that is not helpful in the
review process. Analyzers with high “Not useful” click rates
are fixed or disabled. We found that this feedback loop is
critical for maintaining developer trust in the analysis results.

A Review Tool Beyond Collaborative Review. Finally, we
found strong evidence that Critique’s uses extend beyond
reviewing code. Change authors use Critique to examine
diffs and browse analysis tool results. In some cases, code
review is part of the development process of a change: a
reviewer may send out an unfinished change in order to decide
how to finish the implementation. Moreover, developers also
use Critique to examine the history of submitted changes
long after those changes have been approved; this is aligned
with what Sutherland and Venolia envisioned as a beneficial
use of code review data for development [38]. Future work
can investigate these unexpected and potentially impactful
non-review uses of code review tools.

7.3 Knowledge spreading
Knowledge transfer is a theme that emerged in the work
by Rigby and Bird [33]. In an attempt to measure knowl-
edge transfer due to code review, they built off of prior
work that measured expertise in terms of the number of
files changed [28], by measuring the number of distinct files
changed, reviewed, and the union of those two sets. They find
that developers know about more files due to code review.

At Google, knowledge transfer is part of the educational
motivation for code review. We attempted to quantify this
effect by looking at comments and files edited/reviewed. As
developers build experience working at Google, the average
number of comments on their changes decreases (Figure 2).

0 1 2 3 4 5

Tenure at Google (years)

0

2

4

6

8

10

A
v
er

a
g
e

n
u

m
b
er

of
co

m
m

en
ts

Comments vs. tenure at Google

Comments per change

Comments per 100 LoC

Figure 2: Reviewer comments vs. author’s tenure at Google

0 3 6 9 12 15 18

Tenure at Google (months)

0

100

200

300

400

500

600

700
Files seen vs. tenure at Google

Median number of files edited

Median number of files reviewed

Median number of files edited or reviewed

Figure 3: The number of distinct files seen (edited or reviewed,
or both) by a full-time employee over time.

Developers at Google who have started within the past year
typically have more than twice as many comments per change.
Prior work found that authors considered comments with
questions from the reviewer as not useful, and the number
of not useful comments decreases with experience [11]. We
postulate that this decrease in commenting is a result of
reviewers needing to ask fewer questions as they build famil-
iarity with the codebase and corroborates the hypothesis that
the educational aspect of code review may pay off over time.
Also, we can see that the number of distinct files edited and
reviewed by engineers at Google, and the union of those two
sets, increase with seniority (Figure 3) and the total number
of files seen is clearly larger than the number of files edited.
For this graph, we bucket our developers by how long they
have been at the company (in 3-month increments) and then
compute the number of files they have edited and reviewed.
It would be interesting in future work to better understand
how reviewing files impacts developer fluency [44].

8 CONCLUSION
Our study found code review is an important aspect of the
development workflow at Google. Developers in all roles
see it as providing multiple benefits and a context where
developers can teach each other about the codebase, maintain

189189

¤Newbies ask
more
questions

¤But questions
are
considered
unhelpful

Files vs. time

12

Modern Code Review: A Case Study at Google ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

edited/reviewed the files under review. This corroborates
recent research that frequent reviewers make large contribu-
tions to the evolution of modules and should be included
along with frequent editors [40]. Detecting the right reviewer
does not seem problematic in practice at Google, in fact the
model of recommendation implemented is straightforward
since it can programmatically identify owners. This is in
contrast with other proposed tools that identify reviewers
who have reviewed files with similar names [43] or take into
account such features as the number of comments included
in reviews [42]. At Google, there is also a focus on dealing
with reviewers’ workload and temporary absences (in line
with a study at Microsoft [4]).

Static Analysis integration. A qualitative study of 88 Mozilla
developers [26] found that static analysis integration was the
most commonly-requested feature for code review. Auto-
mated analyses allow reviewers to focus on the understand-
ability and maintainability of changes, instead of getting
distracted by trivial comments (e.g., about formatting). Our
investigation at Google showed us the practical implications
of having static analysis integration in a code review tool. Cri-

tique integrates feedback channels for analysis writers [36]:
Reviewers have the option to click “Please fix” on an analysis-
generated comment as a signal that the author should fix the
issue, and either authors or reviewers can click “Not useful”
in order to flag an analysis result that is not helpful in the
review process. Analyzers with high “Not useful” click rates
are fixed or disabled. We found that this feedback loop is
critical for maintaining developer trust in the analysis results.

A Review Tool Beyond Collaborative Review. Finally, we
found strong evidence that Critique’s uses extend beyond
reviewing code. Change authors use Critique to examine
diffs and browse analysis tool results. In some cases, code
review is part of the development process of a change: a
reviewer may send out an unfinished change in order to decide
how to finish the implementation. Moreover, developers also
use Critique to examine the history of submitted changes
long after those changes have been approved; this is aligned
with what Sutherland and Venolia envisioned as a beneficial
use of code review data for development [38]. Future work
can investigate these unexpected and potentially impactful
non-review uses of code review tools.

7.3 Knowledge spreading
Knowledge transfer is a theme that emerged in the work
by Rigby and Bird [33]. In an attempt to measure knowl-
edge transfer due to code review, they built off of prior
work that measured expertise in terms of the number of
files changed [28], by measuring the number of distinct files
changed, reviewed, and the union of those two sets. They find
that developers know about more files due to code review.

At Google, knowledge transfer is part of the educational
motivation for code review. We attempted to quantify this
effect by looking at comments and files edited/reviewed. As
developers build experience working at Google, the average
number of comments on their changes decreases (Figure 2).

0 1 2 3 4 5

Tenure at Google (years)

0

2

4

6

8

10

A
v
er

a
g
e

n
u

m
b
er

of
co

m
m

en
ts

Comments vs. tenure at Google

Comments per change

Comments per 100 LoC

Figure 2: Reviewer comments vs. author’s tenure at Google

0 3 6 9 12 15 18

Tenure at Google (months)

0

100

200

300

400

500

600

700
Files seen vs. tenure at Google

Median number of files edited

Median number of files reviewed

Median number of files edited or reviewed

Figure 3: The number of distinct files seen (edited or reviewed,
or both) by a full-time employee over time.

Developers at Google who have started within the past year
typically have more than twice as many comments per change.
Prior work found that authors considered comments with
questions from the reviewer as not useful, and the number
of not useful comments decreases with experience [11]. We
postulate that this decrease in commenting is a result of
reviewers needing to ask fewer questions as they build famil-
iarity with the codebase and corroborates the hypothesis that
the educational aspect of code review may pay off over time.
Also, we can see that the number of distinct files edited and
reviewed by engineers at Google, and the union of those two
sets, increase with seniority (Figure 3) and the total number
of files seen is clearly larger than the number of files edited.
For this graph, we bucket our developers by how long they
have been at the company (in 3-month increments) and then
compute the number of files they have edited and reviewed.
It would be interesting in future work to better understand
how reviewing files impacts developer fluency [44].

8 CONCLUSION
Our study found code review is an important aspect of the
development workflow at Google. Developers in all roles
see it as providing multiple benefits and a context where
developers can teach each other about the codebase, maintain

189189

Systematic Review: How
¤Use checklists to remind reviewers what to look for
¤E.g., expanded list of properties from slide #1

¤Specific techniques for specific issues
¤Design is reviewed by working through likely change(s)

(Is the code OCP for likely changes?)

¤Use tools in GitHub or IDE
¤List of changed files
¤Textual diff between old and new files (linked to files)
¤Line-level code commenting support
¤work-flow support for choosing/assigning reviewers
¤protecting main branch

13

GitHub Issue/Review Workflow Screenshot

14

A Checklist for Your Project
1. Good design?

¤ Isomorphic to requirements
¤ Sound like the requirements
¤ SRP
¤ Open-closed principle (OCP) for likely

changes

2. Straightforward implementation?
¤ Understandable code
¤ Good choice of data structures

3. Follows coding conventions?
¤ formatting

(indents, spacing, line breaks)
¤ naming conventions

(sound like behavior)

4. UI looks as intended, fits guidelines

5. Code look correct?
¤ Omitted cases

(e.g., boundary/edge cases)
¤ Off-by-one errors

(e.g., “<“ instead of “<=“)

6. Are the tests adequate (coverage)?
¤ Unit, Story tests

15

• Not strictly ordered by importance
• If fail at a step, can skip less impt.

steps (low cost/benefit to continue)
• E.g., Hard to debug complex code

Review this new code* (no diff)
public	static	boolean	leap(int	y)	{	
		String	t	=	String.valueOf(y);	
		if	(t.charAt(2)	==	'1'	||	t.charAt(2)	==	'3’	||	t.charAt(2)	
==	5	||	t.charAt(2)	==	'7'	||	t.charAt(2)	==	'9')	{	
				if	(t.charAt(3)=='2'||t.charAt(3)=='6')	return	true;	
				else	
						return	false;	
		}else{	
				if	(t.charAt(2)	==	'0'	&&	t.charAt(3)	==	'0')	{	
						return	false;	
				}	
				if	(t.charAt(3)=='0'||t.charAt(3)=='4'||
t.charAt(3)=='8')return	true;	
		}	
		return	false;	
}

*http://web.mit.edu/6.005/www/fa15/classes/04-code-review/

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15

Feedback for your teammate?
¤variable naming – horrible

¤hard to read – formatting/indentation

¤call same functions multiple times with same numbers
¤ name temp vars, extract functions (make code sound like what it’s doing)

¤uses strings; should use integer calculations
¤ maybe could use shift…really modulus

¤assumes 4 digit number…future dates, historical dates
¤ we don’t know the context of use

¤ use of “true” and “false” rather than returning boolean

¤5 is not a character, bad quote (repaired ;)

17

Worst problem? Unnecessarily complex.

18

Revised code responding to code review
//	https://www.timeanddate.com/date/leapyear.html	
public	static	boolean	isLeapYear(int	year)	{	
		return	year	%	4	==	0	&&	
									(year	%	100	!==	0	||	year	%	400	==	0);	
}

19

• Found a simpler approach
• Method name and parameter

sound like the requirements
• Comment citing approach
• Formatted for readability

