
CSE 210 – Principles of Software Engineering

Michael Coblenz
Computer Science & Engineering
UC San Diego
mcoblenz@ucsd.edu

1

Goals of the Course
• Work effectively in a team that uses an Agile

development process

• Design and document software systems according
to stakeholder needs

• Implement and debug complex software systems

• Bottom line: able to think in terms of tradeoffs and
risks

Introductions

•Research in making software engineers
more effective, mostly via better
programming languages

•Recent work: smart contract languages;
REST API design; Rust language

•Previously: Senior Software Engineer at
Apple (eight years)

3

About Class
•Discussion is an integral part of class!

•Past attempts have shown: Zoom is not as good

•BE HERE at 10 AM

• To promote open discussion, class will NOT be
recorded

•Expect changes

4

Health
•Your health comes first

•Do not come to class sick

• Instead, contact me for a Zoom link if you're up to
it

•Masking is currently optional

5

Course Design
•Course design choice: learn technologies or
principles?

• This class is optimized for learning principles.

• In assigning teams: we will assign according to the
tech stack you want to learn and your schedule
availability

•But we won't teach a specific technology

•A quarter isn't enough anyway
6

Grading
•40% project:

•22% your contribution:

• Technical contributions

• Teamwork

• Independence/leadership

•18% team success (deliverables)

•40% individual work

•20% final exam
7

Individual assessment
•Reading responses

•Homework assignments

8

Teamwork
• Teamwork may be the hardest part of the class

• Team skills are a learning goal

• I and TAs are available to help!

• I will adapt content according to challenges you have

•Raise issues with each other and staff before they become serious,
if possible

•Note: instructor and TAs are "responsible employees"

•Please tell us about incidents of harassment, but know that we
must report unlawful discrimination and harassment to OPHD

9

Course schedule
• This is a very tricky course to design!

• Some constraints:

•Maximize time for project

• recognizing that students add/drop for the first two
weeks

• Teach technical skills for security (Rust)

•Rust assignment requires Rust lectures

•Result: Rust first
10

Giving you experience
• I want to give you as much experience as possible in
just one quarter!

•Doing the work yourself is good but not enough

•Also: learn lessons from the past

• In business school: case studies

•Part of my approach: read "The Soul of a New
Machine"

11

The Soul of a New Machine
•Pulitzer prize-winning book about the creation of a new
computer in the early 80s

•Written for a general audience

• Themes: risk; management and people; design tradeoffs

•Available on Kindle ($10), Amazon ($20 new, maybe $10
used)

•You will submit a reading response on Gradescope
(questions will be posted this week)

•Due in three weeks
12

Questions about the course?

13

Why software engineering?

14

Building Great Software is Hard
2/3 of projects are late [Tata]

1/4 of all projects are canceled [Standish]

1/2 run over budget [Tata, SGR CACM]

15http://www.galorath.com/wp/software-project-failure-costs-billions-better-estimation-planning-can-help.php

Allstate insurance planned
a 5-year, $8M project. Six
years later they replanned
for $100M.

Healthcare.gov

•Demand (5x expected) took site down within 2 hrs. of launch

• Site incomplete (menus missing options, incomplete data
transmitted to insurance companies)

•6 users bought insurance the first day

16
https://d3.harvard.edu/platform-rctom/submission/the-failed-launch-of-www-healthcare-gov/

healthcare.gov failure causes

•HHS staff lacked experience launching technology
products

• Failure to divide responsibilities appropriately

• Schedule pressure: launched before ready

17
https://d3.harvard.edu/platform-rctom/submission/the-failed-launch-of-www-healthcare-gov/

http://healthcare.gov

737 MAX
• To avoid cost of a major redesign, Boeing took
shortcuts in aerodynamic design of 737 MAX

• Software was updated to compensate for side effects

• Software was not robust to angle of attack sensor
failures (single point of failure)

•Pilots were insufficiently trained on failure modes

•Result: 346 deaths

18

https://spectrum.ieee.org/how-the-boeing-737-max-disaster-looks-to-a-software-developer

Why the disasters? Scale.

Gibbs, Software’s Chronic Crisis, Sci. Am., Sept. 1994

Users want more and more features

Why the disasters?
 Misunderstood and changing requirements

Steve McConnell, Software Quality at Top Speed,
Software Development, August 1996

“…reworking a software
requirements problem once the
software is in operation typically
costs 50 to 200 times what it would
take to rework the problem in the
requirements stage… A 1-sentence
requirement can expand into…500
lines of code…and a few dozen
test cases.”

Change/Evolution yields Complexity/Bugs

Belady & Lehman, A Model of Large Program Development, IBM Systems Journal, (15)3, 1976

S.E. Practices Like Agile Make a Difference

Results of Raytheon’s use of best-practices.

Rework
Cost

(% of total)

Productivity
Increase (%)

SE practices are
rooted in process-
centric quality control

Quality Control: A Short History

23

Quality control in early manufacturing was
Product-Centric (“what”)
• Regularly test product outputs
• Make adjustments to factory as needed
• But what to fix?

mid-20th c., shift to Process-Centric (“how”)
• Still test product outputs
• Also measure process elements

• plans, people, tools, product-in-progress
• Use cause-and-effect model to adjust

factory as needed
• Statistics to precisely track variation
• Buzzword: Statistical Process Control

• SE has inherited this legacy
• SE methods are process-centric

What’s a Software Process?
It’s the “how” that produces the
“what” – quality software

• What: what customer wants, on
time, under budget, free of flaws

A prescribed sequence of steps

Steps include:
• Planning
• Execution
• Measurement
• Product, and process itself
• Examples: bugs, progress, time,

feature acceptance by cust.

24

A software process is a self-
aware algorithm

¤Observes and adapts
according to measurements

Agile processes are adaptive to
the “customer”

¤ Features, schedule, budget,
priorities, markets, change

¤Must measure these as well as
internal elements (correctness)

¤ Easily extended to adapting to
many other “problems”
¤ …as long as they can be

observed and measured

The Changing Face of Software
Applications

• Web 2.0, Mobile 2.0, …
• Ubiquitous computing
• Developing world
• Big data, AI, ….

Methodologies
• Open Source
• Agile (XP, Scrum)

Technologies
• Web services, JavaScript, AJAX, JQuery, …
• Programming environments
• Component-based, Model-driven software development

Do we rewrite the rules,
or just reinterpret them?

Technical Themes of the Course
Scale

All of computer science, especially CS research, is
about managing scale. So is SE.

Risk, Uncertainty

SE is all about managing risk. Doing something
important requires taking risks. SE seeks to increase
upside risk (great products), while decreasing
downside risks (late, buggy, etc.)

Beyond Process
•Process is just the beginning

• Software engineering is about quality decision-making

•Good architecture

• Teamwork

•Good design

• Thorough quality assurance

• This course is about all of these things.
27

Project
•Everyone has some health and wellness concerns.

•Exercise

•Nutrition

• Some people have additional concerns.

•Chronic conditions (diabetes, asthma, depression, etc.)

•Acute illness (COVID, flu, etc.)

•Create something to help some people with health or wellness.

•Any platform, any technology, any target audience for which
you can find outside stakeholders (not yourselves)

28

Learning goals: first two weeks
1. Elevate your programming skill beyond make it work
toward professional (maintainable, high-quality)

2. Learn practical skills for security (avoiding unsafe
practices)

3. Learn re-usable design principles (ownership)

4. Learn and practice code review

What do you want to learn?

30

