
Program Analysis

Adapted from slides by Hilton, Aldrich, and Le Goues



Learning Goals Today

• Be able to explain how soundness and completeness trade off in the 
design of tools that aim to find bugs automatically.



Spot the Bug
1. static OSStatus 
2. SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, 
3.                                  SSLBuffer signedParams, 
4.                                  uint8_t *signature, 
5.                                  UInt16 signatureLen) { 
6.     OSStatus err; 
7.     … 
8.     if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0) 
9.         goto fail; 
10.    if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0) 
11.        goto fail; 
12.        goto fail; 
13.    if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0) 
14.        goto fail; 
15.    … 
16. fail: 
17.    SSLFreeBuffer(&signedHashes); 
18.    SSLFreeBuffer(&hashCtx); 
19.    return err; 
20.}
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How Should Apple Have Found the Bug?

• Better code review?

• Better testing?

• Formal verification?

• Today's approach: analyze the program's source code
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This code is 
unreachable. 
Isn't that a 
warning sign?



Hard-To-Find Bugs

• Often on a hard-to-execute codepath (need specific test cases)

• Can't actually test code exhaustively (too many paths, way too many states)

• Instead: 

• Identify relevant properties (e.g. code never dereferences NULL)

• Try to prove program has those properties



Program Analysis

• Goal: answer questions about a program

• Examples:

• Might this code ever dereference NULL?

• Can I find any cases in which this code definitely divides by zero?



Soundness and Completeness
• A sound analysis finds all bugs (in a category of bugs).

• No false negatives (doesn't fail to find a bug)

• A complete analysis only reports bugs (in a category of bugs).

• No false positives (doesn't report bogus bugs)

• Generally, analyses are either unsound or incomplete (or both!)



Trust

• If a sound analysis says a program is safe, it is

• (won't miss bugs)

• If a complete analysis reports a bug, the program is buggy

• (won't report bogus bugs)



Static Analysis vs. Dynamic Analysis

• Static analysis is the analysis of programs without executing them

• Usually want to find bugs or prove safety properties (the absence of bugs)

• Often, static analyses can be made sound

• Dynamic analysis allows running programs

• Dynamic analyses are more likely to be complete (only report bugs)



Static Analysis

• Key properties:

• Liveness: "this good thing eventually happens" (e.g. server generates 
a response)

• Safety: "this bad thing never happens" (e.g. dividing by zero)



Example
• What types can 'u' have at each line?

• Can 'u' be negative?

• Will n2s always return a value?

• Can there be division by zero?

• Will the returned value ever include a 
'-'?

def n2s(n: int, b: int): 
  if n <= 0: return '0' 
  r = '' 
  while n > 0: 
    u = n % b 
    if u >= 10: 
      u = chr(ord('A') + u-10) 
    n = n // b 
    r = str(u) + r 
return r

Example credit: Hilton et al.



Static Analysis Techniques
• Linters

• Shallow syntax analysis (unsound, incomplete, unclear properties)

• Type checking (lots of research here)

• Ensures program has well-defined semantics

• Data flow analysis, abstract interpretation (lots of research here too)

• Is a[i] always within bounds?

• Typical answers: "yes", "no", "maybe"



Rice's Theorem (Henry Rice, 1953)

• "Any nontrivial property about the language recognized by a Turing 
machine is undecidable."

• Implication: interesting static analyses will be imperfect (some false 
positives, false negatives, or sometimes not terminate)



Proof Sketch (by Contradiction)

• Suppose you have a function, divides_by_zero, that determines 
whether an input program divides by zero.

int oops(program p, input i) { 
  p(i); 
  return 5/0;  
} 

bool halts(program p, input i) { 
  return divides_by_zero(oops(p,i)); 
}

slide adapted from Aldrich and Le Goues



Sound Analyses…

A. Only report problems that occur in practice, but may miss some bugs

B. Only find some bugs in a given class and may report problems that will not occur in 
practice

C. Find all bugs in a given class, but may report problems that will not occur in practice

D. Find all bugs in a given class and only report problems that really occur

E. Find all bugs, so can't exist in real life
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Complete Analyses…
A. Only report problems that occur in practice, but may miss some 

bugs

B. Only find some bugs in a given class and may report problems that will not occur in 
practice

C. Find all bugs in a given class, but may report problems that will not occur in practice

D. Find all bugs in a given class and only report problems that really occur

E. Find all bugs, so can't exist in real life



Pattern-Based Bug Detection

• e.g. SpotBugs

• Example: if a method acquires a lock, it should release it on all paths

Lock l = ...; 
l.lock(); 
try { 
    // do something 
    l.unlock(); 
}

Oops! l remains locked if an exception is thrown

Lock l = ...; 
l.lock(); 
try { 
    // do something 
} finally { 
    l.unlock(); 
}



Tradeoffs
• Analysis must be super fast

• In general, these pattern-based detectors are unsound and 
incomplete

• Google recommends static analyzers have < 10% false positives 
[Sadowski]

• Otherwise developers will turn them off!
https://abseil.io/resources/swe-book/html/ch20.html



Type-Based Approaches

• Idea: Extend the type system to enable reasoning about important 
properties

public class NullnessExample {
    public static void main(String[] args) {
        Object myObject = null;
        System.out.println(myObject.toString());
    }
}

$ javacheck -processor org.checkerframework.checker.nullness.NullnessChecker NullnessExample.java

NullnessExample.java:9: error: [dereference.of.nullable] dereference of possibly-null reference myObject
        System.out.println(myObject.toString());
                           ^
1 error

https://checkerframework.org/tutorial/webpages/get-started-cmd.html



Abstract Interpretation

• Concrete semantics: all possible executions of a program

https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html



Safety Properties



Testing

• Can only test some of the possible trajectories



Model Checking

• Goal: Explore all possible execution paths (via logic)

• Problem: too many execution paths (loops, recursion)

• Approach: bounded model checking (execute loops at most N times)



Model Checking Example (Ed Clarke)
Model of computation
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Microwave Oven Example



Microwave Specification (Clarke)

• The oven doesn’ t heat up until the door is closed.

• Not heat_up holds until door_closed

• (~ heat_up) U door_closed



Model Checking Formalization (Clarke)

• Let M be a state-transition graph.

• Let ƒ be the specification in temporal logic.

• Find all states s of M such that M, s ⊨ ƒ.



Tradeoffs

• Advantages: don't have to write proofs

• Disadvantages: state explosion; have to formally specify desired 
properties



Model Checking Success Story

• In early 2000s: Windows users were plagued by blue screens of death

• Most common cause: driver bugs (not Microsoft's fault)

• Solution: model check drivers



Bounded Model Checking



Abstract Interpretation



Example: Numerical Intervals

• Ideally: figure out what values variables can have

• But that requires running the program with all inputs ☹

• Instead, track bounds [L, H] for each variable



Will This Code Divide by Zero?

if (x > 0) { 
    x = 2 * x + 1; 
} 
else { 
   x = 1 - 4 * x; 
} 

x = 8 / (x%2)

if (x > 0)

x = 2 * x + 1;x = 1 - 4 * x;

x = 8 / (x%2)



Defining an Abstract Domain

• We need to know if (x % 2) could be 0

• Let's track whether x could be even or odd.

• Don't track all the values x could have.

• Abstract domain: {even, odd}



Analysis

if (x > 0)

x = 2 * x + 1;x = 1 - 4 * x;

x = 8 / (x%2)

{-∞, ∞}; {even, odd}

{-∞, 0}; {even, odd} {1, ∞}; {even, odd}

{3, ∞}; {odd}{1, ∞}; {odd}

{1, ∞}; {odd}



Abstract Interpretation Uses Abstract 
Domains to…

A. Store concrete program states for exhaustive analysis.

B. Reduce the number of cases that must be reasoned about

C. Ensure a program executes faster by precomputing all possible outputs.

D. Simulate program execution for every possible input combination.

E. Identify the most efficient algorithm for solving a given problem.



Conclusion

• We can find lots of bugs by analyzing code

• But analyses are generally unsound, incomplete, or both

• Software engineers hate false positives, so choose analyses wisely


