Adapted from slides by Hilton, Aldrich, and Le Goues

Program Analysis

 Be able to explain how soundness and completeness trade off in the design of tools that aim to find bugs automatically.

Learning Goals Today

1.	stat	cic	OSStat	cus
2.	SSLV	/eri	fySigr	nedServerKeyExchange
3.				
4.				
5.				
6.		OSS	Status	err;
7.		•••		
8.		if	((err	= SSLHashSHA1.updat
9.			goto	fail;
10.		if	((err	= SSLHashSHA1.updat
11.			goto	fail;
12.			goto	fail;
13.		if	((err	= SSLHashSHA1.final
14.			goto	fail;
15.		•••		
16.	fai	.1:		
17.		SSI	FreeBu	iffer(&signedHashes)
18.		SSI	FreeBu	<pre>iffer(&hashCtx);</pre>
19.		ret	urn er	cr;
20.	}			

Spot the Bug

(SSLContext *ctx, bool isRsa, SSLBuffer signedParams, uint8 t *signature, UInt16 signatureLen) {

le(&hashCtx, &serverRandom)) != 0)

.e(&hashCtx, &signedParams)) != 0)

(&hashCtx, &hashOut)) != 0)

1.	statio	c OSStat	cus
2.	SSLVer	rifySigr	nedServerKeyExchange
3.			
4.			
5.			
6.	05	SStatus	err;
7.	•••		
8.	if	E ((err	= SSLHashSHA1.updat
9.		goto	fail;
10.	. if	E ((err	= SSLHashSHA1.updat
11.		goto	fail;
12.	•	goto	<pre>fail;</pre>
13.	. if	E ((err	= SSLHashSHA1.final
14.		goto	fail;
15.	• •••		
16.	. fail:		
17.	. SS	GLFreeBu	iffer(&signedHashes)
18.	. SS	GLFreeBu	iffer(&hashCtx);
19.	. re	eturn ei	cr;
20.	. }		

Spot the Bug

(SSLContext *ctx, bool isRsa, SSLBuffer signedParams, uint8 t *signature, UInt16 signatureLen) {

e(&hashCtx, &serverRandom)) != 0)

e(&hashCtx, &signedParams)) != 0)

(&hashCtx, &hashOut)) != 0)

Behind iPhone's Critical Security Bug, a Single Bad 'Goto'

Like everything else on the iPhone, the critical crypto flaw announced in iOS 7 yesterday turns out to be a study in simplicity and elegant design: a single spurious "goto" in one part of Apple's authentication code that accidentally bypasses the rest of it.

tomorrow belongs to those wh today	no embrace it			\bigoplus		Q		0	
trending	tech	innovation	business		security		advice		buyin

Home / Tech / Security

Apple's 'goto fail' tells us nothing good about Cupertino's software delivery process

The fact that Apple's infamous SSL validation bug actually got out into the real world is pretty terrifying.

Written by Matt Baxter-Reynolds, Contributor March 19, 2014 at 3:00 a.m. PT

How Should Apple Have Found the Bug?

- Better code review? •
- Better testing?
- Formal verification?
- Today's approach: analyze the program's source code

1.	sta	tic	OSStat	cus	
2.	SSL	Veri	fySigr	ned	ServerKeyExchange
3.					
4.					
5.					
6.		OSS	Status	er	r;
7.		•••			
8.		if	((err	=	SSLHashSHA1.update
9.			goto	fa	il;
10.		if	((err	=	SSLHashSHA1.update
11.			goto	fa	il;
12.			goto	fa	il;
13.		if	((err	=	SSLHashSHA1.final
14.			goto	fa	il;
15.					
16.	fai	il:			
17.		SSI	FreeBu	ıff	er(&signedHashes),
18.		SSI	FreeBu	ıff	er(&hashCtx);
19.		ret	urn ei	cr;	
20.	}				

Spot the Bug

(SSLContext *ctx, bool isRsa, SSLBuffer signedParams, uint8 t *signature, UInt16 signatureLen) {

e(&hashCtx, &serverRandom)) != 0)

e(&hashCtx, &signedParams)) != 0)

(&hashCtx, &hashOut)) != 0) This code is Isn't that a warning sign?

Hard-To-Find Bugs

- Often on a hard-to-execute codepath (need specific test cases)
- Can't actually test code exhaustively (too many paths, way too many states)
- Instead:
 - Identify relevant properties (e.g. code never dereferences NULL)
 - Try to prove program has those properties

Program Analysis

- Goal: answer questions about a program
- Examples:
 - Might this code ever dereference NULL?

• Can I find any cases in which this code definitely divides by zero?

Soundness and Completeness

- A sound analysis finds all bugs (in a category of bugs).
 - No false negatives (doesn't fail to find a bug)
- A complete analysis only reports bugs (in a category of bugs).
 - No false positives (doesn't report bogus bugs)
- Generally, analyses are either unsound or incomplete (or both!)

- (won't miss bugs)
- If a complete analysis reports a bug, the program is buggy
 - (won't report bogus bugs)

Trust

Static Analysis vs. Dynamic Analysis

Static analysis is the analysis of programs without executing them •

- Often, static analyses can be made sound
- **Dynamic analysis** allows running programs •

Dynamic analyses are more likely to be complete (only report bugs)

• Usually want to find bugs or prove safety properties (the absence of bugs)

• Key properties:

- a response)
- Safety: "this bad thing never happens" (e.g. dividing by zero)

Static Analysis

• Liveness: "this good thing eventually happens" (e.g. server generates

def n2s(n: int, b: int): if n <= 0: return '0' r = '' while n > 0: u = n % bif u >= 10: u = chr(ord('A') + u-10)n = n // br = str(u) + rreturn r

Example credit: Hilton et al.

Example

- What types can 'u' have at each line?
- Can 'u' be negative?
- Will **n2s** always return a value?
- Can there be division by zero?
 - Will the returned value ever include a '_'?

Static Analysis Techniques

- Linters
 - Shallow syntax analysis (unsound, incomplete, unclear properties)
- Type checking (lots of research here)
 - Ensures program has well-defined semantics
- Data flow analysis, abstract interpretation (lots of research here too) •
 - Is a[i] always within bounds?
 - Typical answers: "yes", "no", "maybe"

- machine is undecidable."
- positives, false negatives, or sometimes not terminate)

Rice's Theorem (Henry Rice, 1953)

"Any nontrivial property about the language recognized by a Turing

• Implication: interesting static analyses will be imperfect (some false

Proof Sketch (by Contradiction)

- whether an input program divides by zero.
 - int oops(program p, input i) { p(i); return 5/0;

bool halts(program p, input i) { return divides_by_zero(oops(p,i));

slide adapted from Aldrich and Le Goues

• Suppose you have a function, divides by zero, that determines

A. Only report problems that occur in practice, but may miss some bugs

- practice
- D. Find all bugs in a given class and only report problems that really occur
- E. Find all bugs, so can't exist in real life

Sound Analyses...

B. Only find some bugs in a given class and may report problems that will not occur in

C. Find all bugs in a given class, but may report problems that will not occur in practice

A. Only report problems that occur in practice, but may miss some bugs

practice

C. Find all bugs in a given class, but may report problems that will not occur in practice

D. Find all bugs in a given class and only report problems that really occur

E. Find all bugs, so can't exist in real life

Sound Analyses...

B. Only find some bugs in a given class and may report problems that will not occur in

A. Only report problems that occur in practice, but may miss some bugs

- practice
- D. Find all bugs in a given class and only report problems that really occur
- E. Find all bugs, so can't exist in real life

Complete Analyses...

B. Only find some bugs in a given class and may report problems that will not occur in

C. Find all bugs in a given class, but may report problems that will not occur in practice

Pattern-Based Bug Detection

- e.g. SpotBugs

Lock l = ...; l.lock(); try { // do something l.unlock();

Oops! l remains locked if an exception is thrown

• Example: if a method acquires a lock, it should release it on all paths

Lock l = ...; l.lock(); try { // do something } finally { l.unlock();

- Analysis must be super fast
- In general, these pattern-based detectors are unsound and incomplete
- Google recommends static analyzers have < 10% false positives [Sadowski]
- Otherwise developers will turn them off! https://abseil.io/resources/swe-book/html/ch20.html

Tradeoffs

https://checkerframework.org/tutorial/webpages/get-started-cmd.html

Type-Based Approaches

 Idea: Extend the type system to properties

public class NullnessExample {
 public static void main(String[] args) {
 Object myObject = null;
 System.out.println(myObject.toString());
 }
}

\$ javacheck -processor org.checkerframework.checker.nullness.NullnessChecker NullnessExample.java

NullnessExample.java:9: error: [dereference.of.nullable] dereference of possibly-null reference myObject System.out.println(myObject.toString());

1 error

Idea: Extend the type system to enable reasoning about important

Abstract Interpretation

Concrete semantics: all possible executions of a program

https://www.di.ens.fr/~cousot/Al/IntroAbsInt.html

• Can only test some of the possible trajectories

Testing

- Goal: Explore all possible execution paths (via logic)
- Problem: too many execution paths (loops, recursion)

Model Checking

Approach: bounded model checking (execute loops at most N times)

Model Checking Example (Ed Clarke)

Microwave Specification (Clarke)

- The oven doesn't heat up until the door is closed.
- Not heat_up holds until door_closed
 - (~ heat_up) U door_closed

Model Checking Formalization (Clarke)

- Let M be a state-transition graph.
- Let f be the specification in temporal logic.
- Find all states s of M such that M, $s \models f$.

- Advantages: don't have to write proofs
- Disadvantages: state explosion; have to formally specify desired properties

Tradeoffs

Model Checking Success Story

- Most common cause: driver bugs (not Microsoft's fault)
- Solution: model check drivers

In early 2000s: Windows users were plagued by blue screens of death

Bounded Model Checking

Abstract Interpretation

Forbidden zone

A betraction of the trainstaries

Abstraction of the trajectories

Example: Numerical Intervals

- Ideally: figure out what values variables can have
 - But that requires running the program with all inputs (3)
- Instead, track bounds [L, H] for each variable •

Will This Code Divide by Zero?

if (x > 0) {
 x = 2 * x + 1;
}
else {
 x = 1 - 4 * x;
}
x = 8 / (x%2)

Defining an Abstract Domain

- We need to know if (x % 2) could be 0
- Let's track whether x could be even or odd.
 - Don't track all the values x could have.
- Abstract domain: {even, odd}

 $\{-\infty,\infty\};$ {even, odd} if (x > 0) $\{1,\infty\};$ {even, odd} x = 1 - 4 * x; x = 2 * x + 1;{3, ∞}; {odd}

$\{-\infty, 0\}; \{even, odd\}$ { | , ∞}; {odd}

Analysis

{|,∞}; {odd} x = 8 / (x%2)

Abstract Interpretation Uses Abstract

- A. Store concrete program states for exhaustive analysis.
- B. Reduce the number of cases that must be reasoned about
- D. Simulate program execution for every possible input combination.
- E. Identify the most efficient algorithm for solving a given problem.

C. Ensure a program executes faster by precomputing all possible outputs.

Conclusion

- We can find lots of bugs by analyzing code
- But analyses are generally unsound, incomplete, or both

Software engineers hate false positives, so choose analyses wisely