
Program Analysis

Adapted from slides by Hilton, Aldrich, and Le Goues

Learning Goals Today

• Be able to explain how soundness and completeness trade off in the
design of tools that aim to find bugs automatically.

Spot the Bug
1. static OSStatus
2. SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,
3. SSLBuffer signedParams,
4. uint8_t *signature,
5. UInt16 signatureLen) {
6. OSStatus err;
7. …
8. if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
9. goto fail;
10. if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
11. goto fail;
12. goto fail;
13. if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
14. goto fail;
15. …
16. fail:
17. SSLFreeBuffer(&signedHashes);
18. SSLFreeBuffer(&hashCtx);
19. return err;
20.}

Spot the Bug
1. static OSStatus
2. SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,
3. SSLBuffer signedParams,
4. uint8_t *signature,
5. UInt16 signatureLen) {
6. OSStatus err;
7. …
8. if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
9. goto fail;
10. if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
11. goto fail;
12. goto fail;
13. if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
14. goto fail;
15. …
16. fail:
17. SSLFreeBuffer(&signedHashes);
18. SSLFreeBuffer(&hashCtx);
19. return err;
20.}

How Should Apple Have Found the Bug?

• Better code review?

• Better testing?

• Formal verification?

• Today's approach: analyze the program's source code

Spot the Bug
1. static OSStatus
2. SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,
3. SSLBuffer signedParams,
4. uint8_t *signature,
5. UInt16 signatureLen) {
6. OSStatus err;
7. …
8. if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
9. goto fail;
10. if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
11. goto fail;
12. goto fail;
13. if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
14. goto fail;
15. …
16. fail:
17. SSLFreeBuffer(&signedHashes);
18. SSLFreeBuffer(&hashCtx);
19. return err;
20.}

This code is
unreachable.
Isn't that a
warning sign?

Hard-To-Find Bugs

• Often on a hard-to-execute codepath (need specific test cases)

• Can't actually test code exhaustively (too many paths, way too many states)

• Instead:

• Identify relevant properties (e.g. code never dereferences NULL)

• Try to prove program has those properties

Program Analysis

• Goal: answer questions about a program

• Examples:

• Might this code ever dereference NULL?

• Can I find any cases in which this code definitely divides by zero?

Soundness and Completeness
• A sound analysis finds all bugs (in a category of bugs).

• No false negatives (doesn't fail to find a bug)

• A complete analysis only reports bugs (in a category of bugs).

• No false positives (doesn't report bogus bugs)

• Generally, analyses are either unsound or incomplete (or both!)

Trust

• If a sound analysis says a program is safe, it is

• (won't miss bugs)

• If a complete analysis reports a bug, the program is buggy

• (won't report bogus bugs)

Static Analysis vs. Dynamic Analysis

• Static analysis is the analysis of programs without executing them

• Usually want to find bugs or prove safety properties (the absence of bugs)

• Often, static analyses can be made sound

• Dynamic analysis allows running programs

• Dynamic analyses are more likely to be complete (only report bugs)

Static Analysis

• Key properties:

• Liveness: "this good thing eventually happens" (e.g. server generates
a response)

• Safety: "this bad thing never happens" (e.g. dividing by zero)

Example
• What types can 'u' have at each line?

• Can 'u' be negative?

• Will n2s always return a value?

• Can there be division by zero?

• Will the returned value ever include a
'-'?

def n2s(n: int, b: int):
 if n <= 0: return '0'
 r = ''
 while n > 0:
 u = n % b
 if u >= 10:
 u = chr(ord('A') + u-10)
 n = n // b
 r = str(u) + r
return r

Example credit: Hilton et al.

Static Analysis Techniques
• Linters

• Shallow syntax analysis (unsound, incomplete, unclear properties)

• Type checking (lots of research here)

• Ensures program has well-defined semantics

• Data flow analysis, abstract interpretation (lots of research here too)

• Is a[i] always within bounds?

• Typical answers: "yes", "no", "maybe"

Rice's Theorem (Henry Rice, 1953)

• "Any nontrivial property about the language recognized by a Turing
machine is undecidable."

• Implication: interesting static analyses will be imperfect (some false
positives, false negatives, or sometimes not terminate)

Proof Sketch (by Contradiction)

• Suppose you have a function, divides_by_zero, that determines
whether an input program divides by zero.

int oops(program p, input i) {
 p(i);
 return 5/0;
}

bool halts(program p, input i) {
 return divides_by_zero(oops(p,i));
}

slide adapted from Aldrich and Le Goues

Sound Analyses…

A. Only report problems that occur in practice, but may miss some bugs

B. Only find some bugs in a given class and may report problems that will not occur in
practice

C. Find all bugs in a given class, but may report problems that will not occur in practice

D. Find all bugs in a given class and only report problems that really occur

E. Find all bugs, so can't exist in real life

Sound Analyses…
A. Only report problems that occur in practice, but may miss some bugs

B. Only find some bugs in a given class and may report problems that will not occur in
practice

C. Find all bugs in a given class, but may report problems that will not
occur in practice

D. Find all bugs in a given class and only report problems that really occur

E. Find all bugs, so can't exist in real life

Complete Analyses…
A. Only report problems that occur in practice, but may miss some

bugs

B. Only find some bugs in a given class and may report problems that will not occur in
practice

C. Find all bugs in a given class, but may report problems that will not occur in practice

D. Find all bugs in a given class and only report problems that really occur

E. Find all bugs, so can't exist in real life

Pattern-Based Bug Detection

• e.g. SpotBugs

• Example: if a method acquires a lock, it should release it on all paths

Lock l = ...;
l.lock();
try {
 // do something
 l.unlock();
}

Oops! l remains locked if an exception is thrown

Lock l = ...;
l.lock();
try {
 // do something
} finally {
 l.unlock();
}

Tradeoffs
• Analysis must be super fast

• In general, these pattern-based detectors are unsound and
incomplete

• Google recommends static analyzers have < 10% false positives
[Sadowski]

• Otherwise developers will turn them off!
https://abseil.io/resources/swe-book/html/ch20.html

Type-Based Approaches

• Idea: Extend the type system to enable reasoning about important
properties

public class NullnessExample {
 public static void main(String[] args) {
 Object myObject = null;
 System.out.println(myObject.toString());
 }
}

$ javacheck -processor org.checkerframework.checker.nullness.NullnessChecker NullnessExample.java

NullnessExample.java:9: error: [dereference.of.nullable] dereference of possibly-null reference myObject
 System.out.println(myObject.toString());
 ^
1 error

https://checkerframework.org/tutorial/webpages/get-started-cmd.html

Abstract Interpretation

• Concrete semantics: all possible executions of a program

https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html

Safety Properties

Testing

• Can only test some of the possible trajectories

Model Checking

• Goal: Explore all possible execution paths (via logic)

• Problem: too many execution paths (loops, recursion)

• Approach: bounded model checking (execute loops at most N times)

Model Checking Example (Ed Clarke)
Model of computation

s
t

~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat
~ Error

Start
Close
Heat
~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error

Microwave Oven Example

Microwave Specification (Clarke)

• The oven doesn’ t heat up until the door is closed.

• Not heat_up holds until door_closed

• (~ heat_up) U door_closed

Model Checking Formalization (Clarke)

• Let M be a state-transition graph.

• Let ƒ be the specification in temporal logic.

• Find all states s of M such that M, s ⊨ ƒ.

Tradeoffs

• Advantages: don't have to write proofs

• Disadvantages: state explosion; have to formally specify desired
properties

Model Checking Success Story

• In early 2000s: Windows users were plagued by blue screens of death

• Most common cause: driver bugs (not Microsoft's fault)

• Solution: model check drivers

Bounded Model Checking

Abstract Interpretation

Example: Numerical Intervals

• Ideally: figure out what values variables can have

• But that requires running the program with all inputs ☹

• Instead, track bounds [L, H] for each variable

Will This Code Divide by Zero?

if (x > 0) {
 x = 2 * x + 1;
}
else {
 x = 1 - 4 * x;
}

x = 8 / (x%2)

if (x > 0)

x = 2 * x + 1;x = 1 - 4 * x;

x = 8 / (x%2)

Defining an Abstract Domain

• We need to know if (x % 2) could be 0

• Let's track whether x could be even or odd.

• Don't track all the values x could have.

• Abstract domain: {even, odd}

Analysis

if (x > 0)

x = 2 * x + 1;x = 1 - 4 * x;

x = 8 / (x%2)

{-∞, ∞}; {even, odd}

{-∞, 0}; {even, odd} {1, ∞}; {even, odd}

{3, ∞}; {odd}{1, ∞}; {odd}

{1, ∞}; {odd}

Abstract Interpretation Uses Abstract
Domains to…

A. Store concrete program states for exhaustive analysis.

B. Reduce the number of cases that must be reasoned about

C. Ensure a program executes faster by precomputing all possible outputs.

D. Simulate program execution for every possible input combination.

E. Identify the most efficient algorithm for solving a given problem.

Conclusion

• We can find lots of bugs by analyzing code

• But analyses are generally unsound, incomplete, or both

• Software engineers hate false positives, so choose analyses wisely

