Program Analysis

Adapted from slides by Hilton, Aldrich, and Le Goues



L earning Goals loday

» Be able to explain how soundness and completeness trade off In the

design of tools that aim to find bugs automatically.



MO Q0 ] Oy Ul b Lo T B

e O 09 ] Oy Ul i 00 DO D e

by

Spot the Bug

Efgile OG5S atus
SSLVerifySignedServerKeyExchange (SSLContext *ctx,

bool 1s5Rsd;

SSLBuffer signedParams,
Uilmie ok So i GRe i tire
Ulntil b signaturelen) |

o clills ery;

S E ((crr = SSIHasShoHAL update(&hashlCtix, &serverRandem)y) =

Goto Ltall;

s e e = oo lHosholIN] . update (ChhashCrx, Scignedbarcms] e =

gote Tall;
Geote Lall;

1 (i - S5l HashSHAL . final (&§hashCex, &hashOut)) = ()

gete faill:;

Tall:
SSLFreeBuffer (&si1gnedHashes) ;
SalErecButrter (&nashCtx) ;
return err;



MO Q0 ] Oy Ul b Lo T B

e O 09 ] Oy Ul i 00 DO D e

by

Spot the Bug

Efgile OG5S atus
SSLVerifySignedServerKeyExchange (SSLContext *ctx,

bool 1s5Rsd;

SSLBuffer signedParams,
Uilmie ok So i GRe i tire
Ulntil b signaturelen) |

o clills ery;

S E ((crr = SSIHasShoHAL update(&hashlCtix, &serverRandem)y) =

Goto Ltall;

s e e = oo lHosholIN] . update (ChhashCrx, Scignedbarcms] e =

gote Tall;
goto fail;

1 (i - S5l HashSHAL . final (&§hashCex, &hashOut)) = ()

gete faill:;

Tall:
SSLFreeBuffer (&si1gnedHashes) ;
SalErecButrter (&nashCtx) ;
return err;



KEVIN POULSEN SECURITY FEB 22, 2814 11:27 AM

Behind iPhone's Critical Security Bug, a Single Bad 'Goto’

Like everything else on the iPhone, the critical crypto flaw announced in iOS 7 yesterday turns out to be a study in simplicity
and elegant design: a single spurious "goto" in one part of Apple's authentication code that accidentally bypasses the rest of it.

=D
NET

/ tech

tomorrow

belongs to those who embrace it @ Q g

today

trending tech innovation business security advice buyin
Home /7 Tech 7 Security

Apple's 'goto fail’ tells us nothing good
about Cupertino's software delivery
process

The fact that Apple's infamous SSL validation bug actually
got out into the real world is pretty terrifying.

Written by Matt Baxter-Reynolds, Contributor
March 19, 2014 at 3:00 a.m. PT




—How Should Apple Have Found the Bug!

« Better code review!

f better testing!

* Formal verification?

» loday's approach: analyze the program's source code



MO Q0 ] Oy Ul b Lo T B

e O 09 ] Oy Ul i 00 DO D e

DO e

Spot the Bug

Efgile OG5S atus
ol /el tysignedserverkKeyExchange (SSLContext *ctx, bool 1s5Rsa,
SSLBuffer signedParams,
Uilmie ok So i GRe i tire
Ulntil b signaturelen) |
Cooiebklls cry;

S E ((crr = SSIHashoHAlL update(&hashCtx, &serverRandem)) =

Goto Ltall;
silf (e = Sl Hash3HAl update(shashCix, &sighnedParamsl) = )
gote Tall;

gqoko faial ;
= SolbHashoHAL  final (GhashCese, ShashOnue) )

ol

Tall:
SSLFreeBuffer (&si1gnedHashes) ;
SalErecButrter (&nashCtx) ;
return err;

This code Is

unreachable.
sntthd o
warning sign?




« Often on a harc

» (Can't actually test coc

* |nstead:

£ il relevant properties (e.g. coc

f iy o

DI OVE

Hard- lo-rind Bugs

brogram has those

B1Ae)

e exhaustively (too many

-to-execute codepath (need specific test cases)

baths, way too many states)

Clicvel ©

verties

ereferences NULL)



Program Analysis

» (Goal: answer questions about a program

* Examples:

el Lhis code ever dereference NULL!

» Can | find any cases In which this code definitely divides by zero!



Soundness and Completeness

- A sound analysis finds all bugs (in a category of bugs).

» No false negatives (doesn't fail to find a bug)

- A complete analysis only reports bugs (in a category of bugs).
» No false positives (doesn't report bogus bugs)

 Generally, analyses are either unsound or incomplete (or both!)



lrust

» [T a sound analysis says a program s safe, It IS

* (won't miss bugs)

» | a complete analysis repor

'S a bug, the

* (won't report bogus bugs)

Drogram Is bugsy




Static Analysis vs. Dynamic Analysis

 Static analysis is the analysis of programs without executing them

» Usually want to find bugs or prove safety properties (the absence of bugs)

- Often, static analyses can be made sounc

* Dynamic analysis allows running programs

* Dynamic analyses are more likely to be complete (only report bugs)




E Rey properties:

Static Analysis

» Liveness: "this good thing even

a response)

» Safety: "this bac

ually ha

Dens’ (e.8. server sericrates

thing never happens” (e.g. dividing by zero)



Example

def n2s(n: int, b: int):
5T Il == 0U: return '0'

r.=II

while n > 0:
=2 N % Db
3 1 >= 10:

u = chr(ord('A') + u-10)
i =n // Db
[ = strlu) +r
return r

-xample credit: Hilton et al.

* What types can 'u’ have at each line!

* Lan U be hegilne

+ Will n2s always return a value!

« (an there be division by zeies

Wil the returnec
I_I?

value ever Incluc

C ¢l



Static Analysis Techniques

e Linters

» Shallow syntax analysis (unsound, iIncomplete, unclear properties)
& I chiecking (lots of research here)

* Ensures program has well-defined semantics

» Data flow analysis, abstract interpretation (lots of research here too)

» Is a1] always within bounds!

» lypical answers: "yes", 'no", "maybe”



Bie s [heorem (Henry Rice, 1758

* "Any nontrivial property about the language recognized by a luring
machine Is undecidable.”

» Implication: interesting static analyses will be imperfect (some false
positives, false negatives, or sometimes not terminate)



Proof Sketch (by Contradiction)

» Suppose you have a function,divides_by_ zero,that determines
whether an Input program divides by zero.

int oops(program p, input i) {
p(1i);
return 5/0;

}

bool halts(program p, input i) {
return divides by zero(oops(p,i));

}

slide adapted from Aldrich and Le Goues



i

Sound Analyses. ..

Only report problems that occur in practice, but may miss some bugs

Only find some bugs In a given class and may report problems that will not occur In
practice

. FInd all bugs In a given class, but may report problems that will not occur In practice

~ind all bugs In a given class and only report problems that really occur

Find all bugs, so can't exist In real life



i

Sound Analyses. ..

A. Only report problems that occur in practice, but may miss some bugs

B. Only find some bugs in a given class and may report problems that will not occur In
practice

C. Find all bugs in a given class, but may report problems that will not
occur in practice

D. rind all bugs In a given class and only report problems that really occur

. Find all bugs, so can't exist in real life




i

A. Only report problems that occur in practice, but may miss some
bugs

Complete Analyses...

B. Only find some bugs in a given class and may report problems that will not occur In
practice

C. Find all bugs In a given class, but may report problems that will not occur in practice

D. rind all bugs In a given class and only report problems that really occur

Find all bugs, so can't exist In real life



Pattern-Based Bug Detection

* e.g. SpotBugs

» Example: it a method acquires a lock, it should release it on all paths

lock 1 = ...: lock L = ..

1. lock(); 1. lock():

try { try {
// do something // do something
l.unlock(); } finally &

L.unlock():
+

Oops! L remains locked if an exception is thrown



Tradeofts

* Analysis must be super fast

* In general, these pattern-based detectors are unsound anc

incomplete

» Google recommends static analyzers have < |0% false positives

| Sadowski]

» Otherwise developers will turn them off!
https://absell.io/resources/swe-book/html/ch20.html




https://checkerframework.org/tutorial/webpages/get-started-cmd.html

|lype-Based Approaches

» |dea: Extend the type system to enable reasoning about important

properties

public class NullnessExample {
public static void main(String[] args) {
Object myObject = null;
System.out.println(myObject.toString());

I

$ javacheck -processor org.checkerframework.checker.nullness.NullhessChecker NullnessExample. java

NullnessExample.java:9: error: [dereference.of.nullable] dereference of possibly-null reference myObject

System.out.println(myObject.toString());
A

1 error




Abstract Interpretation

» Concrete semantics: all possible executions of a program

A

‘ Possible
trajectories

https://www.di.ens.fr/~cousot/Al/IntroAbsInt.htmi



Safety Properties

Forbidden zone

QA\VI > Possible
%‘\ ‘ trajectories
S et e S




lesting

» (Can only test some of the possible trajectories

Forbidden zone

Possible
trajectories

Test of a few trajectories




lodel Checking

» Goal: Explore all possible execution paths (via logic)

* Problem: too many execution paths (loops, recursion)

» Approach: bounded model checking (execute loops at most N times)



Model Checking Example (Ed Clarke)

Microwave Oven Example

~ Start
~ Close
~ Heat
~ Error




Microwave Specification (Clarke)

£ e oven doesn t heat up until the door Is closed.
» Not heat_up holas until door_closea

. heat up) U door closed



Model Checking Formalization (Clarke)

» Let M be a state-transition grapn.

» Let f be the specification in temporal logic.

§ Find all states s of M such that M, sk [.



» Advantages: don't have

» Disadvantages: state ex
properties

Tradeofts

to write proofs

blosion; have to formally s

becity desired




Model Checking Success Story

» |n early 2000s: Windows users were plagued by blue screens of death
» Most common cause: driver bugs (not Microsoft's fault)

» Solution: model check drivers



Bounded Model Checking

Forbidden zone

Possible
trajectories

Bounded model-checking of trajectory prefixes




Abstract Interpretation

Forbidden zone

} FPossible
| D trajectories
|

Abstraction of the trajectories




cxample: Numerical Intervals

- |deally: figure out what values variables can have
» But that requires running the program with all inputs &

» |nstead, track bounds [L, H] for each variable



Wil This Code Divide by Zero!

if (x > @)
iF (x > 0) {
= o X+ 1 /\
ilse { X = | = 4 % X X = 2 % X &35 18

} P = 1 — 4 x x: \\\ ‘//

E =B/ (os2) X =8 / (X%



Defining an Abstract Domain

Ve ficed to know If (x 76 2) could be O

« | et's track whether x could be even or odd.

L on L track all the values x could have.

» Abstract domain: {even, odd}



Analysis

{-00, oo}' {even, odd}

(x > 0)

{-00, O} {even, odd} / \ {1, o0}; {even, odd}

X = 1 — 40 %k X! X =2 % ¥ 4+ 1

{|, oo} {odd]} \ / {3, o0}; {odd]}

{|, o0}; {oad}
%= 8 J (yS 2]



Abstract Interpretation Uses Abstract

LJoiamns o kﬁ

A. Store concrete program states for exhaustive analysis.

B. Reduce the number of cases that must be reasoned about

C. Ensure a program executes faster by precomputing all possible outputs.

D. Simulate program execution for every possible iInput combination.

t. ldentify the most efficient algorithm for solving a given problem.




Conclusion

» We can find lots of bugs by analyzing code
» But analyses are generally unsound, iIncomplete, or botn

* Software engineers hate false positives, so choose analyses wisely



