
Bugs in Large Software Systems
Practice and Research

Debugging Strategies

• Goal today: debugging strategies for large systems

• Large means "too big to fit in your head all at once"

• If you are using a framework, your system is large!

Origin of "Bug"
• Wikipedia: Middle English word bugge is the

basis for the terms "bugbear" and "bugaboo"
as terms used for a monster.

• The term "bug" to describe defects has been
a part of engineering jargon since the 1870s

• Thomas Edison wrote in a letter to an
associate in 1878:

• .".. difficulties arise—this thing gives out
and [it is] then that "Bugs"—as such little
faults and difficulties are called—show
themselves"

https://americanhistory.si.edu/collections/search/object/nmah_334663

Bug found in Mark II computer in 1947 (Harvard University)

Plan A: Avoid Fixing It (at Least, for Now)

Unfortunately

• You (usually) can't fix every bug.

• There are too many

• Lots of bugs don't really matter

• But you'd better fix the important ones!

It's a Feature, Not a Bug?
• Bugs represent discrepancies between expectations and the implementation

• Some (but in most systems, not all!) expectations are encoded in
specifications

• Two ways to fix bugs

• Change code

• Change the specification

Priorities
• Manager: "Please fix this performance bug. It's super important."

• You: "No problem. I'll re-architect module X."

• Manager: "How long will that take?"

• You: "Two weeks."

• Manager: "If we do that, we won't have time to fix ten other bugs. Actually,
that bug wasn't so important after all."

Risk
• Manager: "Please fix this performance bug. It's super important."

• You: "No problem. I'll re-architect module X."

• Manager: "What might break if you do that?"

• You: "Modules Y and Z depend on X, so we'd have to re-test them."

• Manager: "Ugh. Let's fix it in the next release."

In Contrast: Severity
• You: "We need to fix this bug."

• Manager: "How long will it take?"

• You: "Two weeks."

• Manager: "No way."

• You: "But otherwise we might leak private customer data to the Internet."

• Manager: "Ugh, okay, go ahead."

Moral

• Consider cost, risk, and severity before fixing a bug.

On Culture

• "Whose fault is this bug?"

• Leads to a culture of blame.

• Incentivizes bad behavior. Instead, want all bugs to all get reported/logged

• Report and prioritize all bugs

• Your "very serious" bug may be low priority or actually a feature!

A Bug Report
• Should say:

• How to reproduce bug

• (otherwise you won't know whether you've fixed it!)

• What the observed behavior is

• What the expected behavior is

• Don't assume the expected behavior is the correct behavior, either! (recall plan A)

Fixing Bugs

• Two phases

• Fault localization ("which code is buggy?")

• Fault repair ("what do I do about it?")

• Most of the work (in my experience) is usually in fault localization

Be Deliberate

• The turtle wins the race

• Fix one bug at a time

• Write test cases for each bug

• Commit after fixing each bug

Fault Localization
• Traditional approach: you're supposed to come up with hypotheses

• And then test them (order according to likelihood and ease of elimination)

• But sometimes you just don't know!

• I'm going to show you some tricks

• Goal: fix the bug while understanding no more than necessary

• Assumption: reading all the code is impossible.

Test Case Minimization

• Remove all elements of the test case that are unnecessary.

• In industry: maybe your QA staff can help you with this.

Narrowing Down the Responsible Code
• Replace modules with mock modules that do the right thing

• Try to show the bug is in a framework you're using: build a minimal
broken example

• Either you file a bug report against the framework, or you learn a
key ingredient in the bug and a possible workaround

• Descend a layer of abstraction (debug into the framework)

Divide and Conquer
• The bug is because either :

• (A) a component does not do what it's supposed to do

• (B) a component DOES do what it's supposed to, but that is not what some OTHER
component (or the user) needed.

• THEREFORE:

• Be explicit about assumptions (preconditions)

• Be explicit about expectations (postconditions)

Regressions
• Did this use case previously work, but now it's broken?

• Then you have a regression

• Try: find out which specific change broke it

• git bisect

• Now you know at least some of the relevant code.

Bad State

• Bug: after doing X, some state is wrong.

• Doing X involves running a lot of code.

• Plan: Sprinkle assertions throughout code
for X.

• Drill down.

assert(state correct);
foo();
assert(state correct);
bar();

(OK)

(assertion failed. Bug must be in foo().)

Next step: sprinkle assertions inside foo(). Avoid reading bar().

"I Have No Idea Where to Start."

• Search code for relevant-sounding words

• Add breakpoints, trace through relevant code

• Anything hit?

• If so, you may have found something relevant

Ask an Expert

• "Can you give me a pointer to where I might start looking?"

• Not asking someone else to do your job

• You will get up to speed faster and be more helpful if you take a
little advice

Which Expert?
• If you can find remotely-related code: git blame

c3264e536 (Michael Coblenz 2019-09-06 15:41:37 -0400 81) def removeThisFieldType(fieldName: String): Context =
c3264e536 (Michael Coblenz 2019-09-06 15:41:37 -0400 82) Context(contractTable,
c3264e536 (Michael Coblenz 2019-09-06 15:41:37 -0400 83) underlyingVariableMap,
c3264e536 (Michael Coblenz 2019-09-06 15:41:37 -0400 84) isThrown,
ff40088b2 (Michael Coblenz 2019-11-25 14:00:30 -0500 85) transitionFieldsDefinitelyInitialized,
ff40088b2 (Michael Coblenz 2019-11-25 14:00:30 -0500 86) transitionFieldsMaybeInitialized,
c3264e536 (Michael Coblenz 2019-09-06 15:41:37 -0400 87) localFieldsInitialized,
c3264e536 (Michael Coblenz 2019-09-06 15:41:37 -0400 88) thisFieldTypes - fieldName,
c3264e536 (Michael Coblenz 2019-09-06 15:41:37 -0400 89) valVariables)
c3264e536 (Michael Coblenz 2019-09-06 15:41:37 -0400 90)
c8f738622 (Michael Coblenz 2019-04-02 11:10:28 -0400 91) def updatedMakingVariableVal(variableName: String): Context =
c8f738622 (Michael Coblenz 2019-04-02 11:10:28 -0400 92) Context(contractTable,
c8f738622 (Michael Coblenz 2019-04-02 11:10:28 -0400 93) underlyingVariableMap,
c8f738622 (Michael Coblenz 2019-04-02 11:10:28 -0400 94) isThrown,
ff40088b2 (Michael Coblenz 2019-11-25 14:00:30 -0500 95) transitionFieldsDefinitelyInitialized,
ff40088b2 (Michael Coblenz 2019-11-25 14:00:30 -0500 96) transitionFieldsMaybeInitialized,
c8f738622 (Michael Coblenz 2019-04-02 11:10:28 -0400 97) localFieldsInitialized,
c8f738622 (Michael Coblenz 2019-04-02 11:10:28 -0400 98) thisFieldTypes,
c8f738622 (Michael Coblenz 2019-04-02 11:10:28 -0400 99) valVariables + variableName)

Print Statements

• Both for logging data and for monitoring control flow

• Did this code run?

• Especially useful for debugging race conditions

Narrowing Down the Problem

• Compare how you think it should work to how it does work

• Plan A: read the code (like reading English)

• Plan B: trace through the code very carefully

Unusual Situations

• "Heisenbugs": bugs that disappear when you try to debug them

• Usual suspects:

• Race conditions (try using print statements or lightweight logging)

• Compiler optimizations (either due to performance changes or due to
compiler bugs)

• Hardware failures, configuration errors (does it reproduce on another machine?)

Careful Recording
• If you realize you can't keep everything in your head:

• Get out a notebook.

• Record:

• Each hypothesis

• Test inputs and results (every test) and what you conclude

• Change only one thing at a time

Fault Repair
• Complaint:
NullPointerException raised
on last line of foo()

• Add null check in foo()?

• Avoid passing null in cause()?

• Usually, you want to fix the root cause.
Which is it?

void cause() {
 String x = foo(null);
}

int foo(String s) {
 List<String> l = new List<>();
 l.add(s);
 Map<Integer, List<String>> m = new Map<>();
 m.put(42, l);
 // a bunch more computation
 String p = m.get(42).get(0);
 return p.length();
}

Credit: https://www.cs.tufts.edu/comp/121/08-debugging.pdf

Fix Both?

• Wearing both belt and suspenders
prevents disaster…

https://www.pexels.com/photo/man-in-shirt-with-bow-tie-and-pants-with-suspenders-18236780/

Best Fix Depends on Risk Tolerance

https://pxhere.com/en/photo/895059 https://commons.wikimedia.org/wiki/File:Tweezers_2019.jpg

Git Blame, Again

• Maybe change ff40088b2 is suspicious.

c3264e536 (Michael Coblenz 2019-09-06 15:41:37 -0400 81) def removeThisFieldType(fieldName: String): Context =
c3264e536 (Michael Coblenz 2019-09-06 15:41:37 -0400 82) Context(contractTable,
c3264e536 (Michael Coblenz 2019-09-06 15:41:37 -0400 83) underlyingVariableMap,
c3264e536 (Michael Coblenz 2019-09-06 15:41:37 -0400 84) isThrown,
ff40088b2 (Michael Coblenz 2019-11-25 14:00:30 -0500 85) transitionFieldsDefinitelyInitialized,
ff40088b2 (Michael Coblenz 2019-11-25 14:00:30 -0500 86) transitionFieldsMaybeInitialized,
c3264e536 (Michael Coblenz 2019-09-06 15:41:37 -0400 87) localFieldsInitialized,
c3264e536 (Michael Coblenz 2019-09-06 15:41:37 -0400 88) thisFieldTypes - fieldName,
c3264e536 (Michael Coblenz 2019-09-06 15:41:37 -0400 89) valVariables)
c3264e536 (Michael Coblenz 2019-09-06 15:41:37 -0400 90)
c8f738622 (Michael Coblenz 2019-04-02 11:10:28 -0400 91) def updatedMakingVariableVal(variableName: String): Context =
c8f738622 (Michael Coblenz 2019-04-02 11:10:28 -0400 92) Context(contractTable,
c8f738622 (Michael Coblenz 2019-04-02 11:10:28 -0400 93) underlyingVariableMap,
c8f738622 (Michael Coblenz 2019-04-02 11:10:28 -0400 94) isThrown,
ff40088b2 (Michael Coblenz 2019-11-25 14:00:30 -0500 95) transitionFieldsDefinitelyInitialized,
ff40088b2 (Michael Coblenz 2019-11-25 14:00:30 -0500 96) transitionFieldsMaybeInitialized,
c8f738622 (Michael Coblenz 2019-04-02 11:10:28 -0400 97) localFieldsInitialized,
c8f738622 (Michael Coblenz 2019-04-02 11:10:28 -0400 98) thisFieldTypes,
c8f738622 (Michael Coblenz 2019-04-02 11:10:28 -0400 99) valVariables + variableName)

Git Show
commit ff40088b2466d724295a4c7e1d6f8385644d8de2
Author: Michael Coblenz <mcoblenz@cs.cmu.edu>
Date: Mon Nov 25 14:00:30 2019 -0500

 Track state field assignments properly so we can give the right errors when one branch
assigns but fails to transition.

diff --git a/src/main/scala/edu/cmu/cs/obsidian/typecheck/Checker.scala b/src/main/scala/
edu/cmu/cs/obsidian/typecheck/Checker.scala
index 8c93fe4b..627376a6 100644
--- a/src/main/scala/edu/cmu/cs/obsidian/typecheck/Checker.scala
+++ b/src/main/scala/edu/cmu/cs/obsidian/typecheck/Checker.scala
@@ -18,7 +18,8 @@ import scala.collection.immutable.TreeMap
 case class Context(table: DeclarationTable,
 underlyingVariableMap: Map[String, ObsidianType],
 isThrown: Boolean,
- transitionFieldsInitialized: Set[(String, String, AST)],
+ transitionFieldsDefinitelyInitialized: Set[(String, String, AST)],
+ transitionFieldsMaybeInitialized: Set[(String, String, AST)],
 localFieldsInitialized: Set[String],
 thisFieldTypes: Map[String, ObsidianType],
 valVariables : Set[String]) {
@@ -28,7 +29,8 @@ case class Context(table: DeclarationTable,
 Context(contractTable,
 underlyingVariableMap.updated(s, t),
 isThrown,
- transitionFieldsInitialized,
+ transitionFieldsDefinitelyInitialized,
+ transitionFieldsMaybeInitialized,
 localFieldsInitialized,
 thisFieldTypes,
 valVariables)

Fixing the Bug
• Write a test case for the bug (which initially fails)

• Fix the bug

• Search for additional instances of the bug

• Run all the tests

• Get your change reviewed

A Classic Job Interview Question

• Tell me about a tough bug you fixed.

Conclusion

• Narrowing down the test case and the possibly-relevant code can
help you identify the root cause

• Even in unfamiliar code!

• Asking experts is often a good plan.

