-ocus: Moditiability

Goal: iIdentify tactics that can improve modifiability

Source: https://resources.sel.cmu.edu/asset_files/ TechnicalReport/200/7_005_001_[4858.pdf (Bachmann, Bass, Nord)

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2007_005_001_14858.pdf

When Wil the Change Occur?

Design time Deployment time Execution time

Modification

Responsliollities

* A responsibility Is an action, knowledge to be maintained, or a decision to be

carried out by a software system or an element of that system. [Bachmann, Bass,
Nord]

» Responsibilities are assigned to modules
» But what Is the cost of modifying a responsibility?

» Responsibilities can be coupled: a modification to one can result in a
modification to the other

Coupling

» Cost of modifying module A depends on how tightly-coupled 1t I1s to other

modules

» |dea: reducing coupling may reduce modification costs

§ 10 reduce coupling:

* Minimize relationships among elements not In the same module

» Maximize relationships among elements In the same module

Cohesion

» Put related responsibilities in the same module

* [o maximize modifiability, maximize cohesion & minimize coupling

Bl e

» Reducing the cost of modifying a single responsibility
» Split a Responsibility.

* |Increasing cohesion

t Hintaln >emantic Coherence.

£ Uilfact Common oervices.

» Reducing coupling

» Use Encapsulation.

® e a Vrappen

Ralse the A Dbstraction Level.

» Use an Intermediary.

& ealvict (ommunication Paths,

lactic |: Split a Responsibility

e (Goal: split so the new

modules can be A \ A
: SAx SA’x SA
modifiec
independently
A A > A Key:
« Also: enables Saow Module
. : <4—» Strength of
deferred binding i e couping

fie blace module A

at runtime)

i (lIc 2 Increase (ohesitn

* |dea: move responsibilities from one module to another

| P SA”x * SB”x t Key:
* Approach: put A" and B' in the same module o
<4—» Strength of
coupling
A A
SAx Sex v v
A” B
g I Sg” AB
v v
A B A,’ B SA’B’x
o -

Before After

But: How Do We Split a Module!

» 2.l:maintain semantic coherence (A', B' may need to change in the
future)

» 2.2:abstract common services (A', B' represent similar services)

§ | Ulse enca

Jactic 3: Reduce Coupling

C

D E
\\SAC /SAD /E
A

Before

Key:

MMMMMM

tttttttttt
coupling

bsulation (hide information in A)

B

After

MMMMMM

coupling

Add a Wrapper

» Encapsulation hides information
* Wrappers transform invocations

* (Yyes, the boundary Is fuzzy)

Ralse the Abstraction Level

» Usually: add parameters to Interface

» Makes the module more abstract, enables flexibility

Use an Intermediary, Restrict Communication
Paths

» Break dependency (but add a new one instead) e
Module
I SBx <4—» Strength of
coupling
I SBx B
B 1 SB intermediary
Intermediary
I SAB
i SA intermediary
A A
I SAX I SAX
Before

After

Architecture Speed Dating!

Or: Instamatic Architecture Micro-Reviews
~ocus: Modifiability

Problem: Al Ms

¥ DN an architecture for Al Ms. Features:

e Bk has remote Al Ms and a central server

» Users should be able to withdraw cash from their accounts.
» Modification scenario |: bank merger.
» Modification scenario 2: support two-factor authentication for withdrawals.

 Modification scenario 3: support depositing paper checks.

