Design Patterns

Patterns

» Often, the same problem arises in multiple contexts

» "A Pattern Language" describes 253 patterns for architects: "All
253 patterns together form a language.”

» "each pattern represents our current best guess as to what
arrangement of the physical environment will work to solve the
problem presented. [he empirical questions center on the

problem—does 1t occur and is 1t felt In the way we describe it/

—and the solution—does the arrangement we propose solve
I problem!?

A Pattern Language

Towns ‘Buildings ‘ Construction

Christopher Alexander

Sara Ishikawa - Murray Silverstein

Max Jacobson ‘ Ingrid Fiksdahl-King
Shlomo Angel

A Pattern Language Example

» "When they have a choice, people will always gravitate to those rooms which
have light on two sides, and leave the rooms which are Iit only from one side
unused and empty.’

» "Locate each room so that it has outdoor space outside It on at least two sides,
and then place windows In these outdoor walls so that natural light falls into
every room from more than one direction.”

https://www.patternlanguage.com/apl/aplsample/aplsample.ntm

Lighting: Iwo Sides vs One Side

Wrinkle the Edge

* "Wrinkling the edge" of a buillding

enables natural light from more than
one side of each room

Object-Oriented Patterns

e Ciang of Four book (1994) describes
23 patterns

» [he problems they address are still
fOimon — and so are the patterns!

Some patterns solve multiple different
pDroblems

Design Patterns

Elements of Reusable

Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vhssudes

Foreword by Grady Booch

b

>
®,
>
e
‘"
\/
Z
-
2
m
v
-
m
e
R
~
A
/)
-
m
U
L
S
o
Z
2
O
™\
4
=

B
C
=
Z
9
W
m
L
m
e

Software Patterns

* "Programs live and grow, and their inhabrtants—
the programmers—need to work with that

program the way the farmer works with the
homestead.” (Richard P Gabriel)

Fach Pattern Solves Certain Problems

* With practice, you will see those problems and think "ahal | need THIS

dattern!”

» Not every problem has a pattern-based solution.

« At least, not a named pattern in the book.

» But when you now might think "now what?!" eventually you'll think "the

usual way to do this is...".

-actory Pattern

» Sometimes object creation I1s complicated

§ ICCL needs to be hooked up” or which object to create

depends on something
» Putting this logic everywhere would violate DRY

» Solution: put complicated logic in a "factory”

Example

class Month {
private int month;

public String monthName() {..}
}

» How many different Month instances do we need to allocate!

 No need to ever have more than | 2!

Want o Re-Use Month Objects

class MonthFactory {
Month[] allMonths;

public static Month createMonth(int month) {
if (month >= 0 && month <= 11) {
return allMonths[month]:
+
else {
// throw..
+

Another Example

» [wo varieties of maze games

» OrdinaryMazeGame uses OrdinaryRoom Instances

» MagicMazeGame uses MagicMazeRoom instances

‘he res

s \V\Vant to re-use

implementations)

source: VVikipedia, based on

= of the game logic (don't want -

Design Patterns book

‘WO game

ROOMS

(abstract class)

!

@ Room

@ Connect(room: Room): void

(concrete class) / nherits from)

@ MagicRoom @ OrdinaryRoom

e Connect(room: Room): void e Connect(room: Room): void

MazeGame

@ Room

e Connect(room: Room): void

© MagicRoom

e Connect(room: Room): void

@ OrdinaryRoom

e Connect(room: Room): void

@ MazeGame

0 rooms: []

o «Create»

& MakeRoom(): Room

MazeGame(): MazeGame

.

@ MagicMazeGame

@ OrdinaryMazeGame

< MakeRoom(): MagicRoom & MakeRoom(): OrdinaryRoom

MakeRoom() Is a factory method: it always makes a new room of the right type

Singleton Pattern

» Sometimes there should be only ONE of something.
» Often, you only want one factory!

» Other examples: logger; cache; thread pool

» Use sparingly

» Singletons smell an awful lot like global variables

Singleton In Java

class ThreadPool {
static ThreadPool instance:

private ThreadPool() {} Private constructor forces singleton access

public static ThreadPool getInstance() {

i1 (instance == null) { Not thread-safe!

instance = new ThreadPool():
+

return i1nstance:

h

// Instance methods go here

h

Observer Pattern

» Suppose you have a slideshow application (like this one)

* YOU Can draw shapes .

* and you can set their colors:

» Changing the color with erther affordance updates both.

ALIrst ey

:VIGW
Controller Controller

setCoIor& Aiy
colorChanged()

oo much coupling! Model

shouldn' t know about each
controller.

colorChanged()

Observer

=

Listener

Controller |
setColor() \YlorChangedQ
notn° cation

Controller

Listenerfd

setColor()

colorChanged()

Notification Center

Adapter Pattern

» Goal: re-use existing component In a new context

* Problem: new context assumes a different interface

» Solution: Adapter

Adapter Outlet

(Converts requests (External Incompatible)

Power plug to be compatible)

(Original form of request)

Plug 1s iIncompatible with outlet

https://medium.com/@erlandmuchasaj/adapter-design-pattern-eddc3fa6f33d

Example

» Building a shopping app that aggregates data from different sources

(Shopity, BisCommerce, etc.)

* Problem: different sources have different APls

« Solution: define a common APIl: wrap each source In an adapter

Existing code (don't want to

Generic Interface

change this)

Client

dispatch

=<=|nterface==
Target

+ getFeed(): array
+ getProduct(int Sid): array

A

Adapter

Provided code

(can't change this)

+ getFeed(): array {

}
+ getProduct(int Sid): array

return adaptee getList():

Adaptee

——adaptee—p

+ getList(): array
+ getltem(int 3id): array
+ specificRequest(): array

tach service has an adapter that

implements the generic interface

“*~J+ getlitem(int $id): array

+ getList(): array

+ specificRequest(): array

Conclusion

» Design patterns succinctly describe good solutions to common
problems

» But not every problem can be solved with a design pattern!

» Very useful as vocabulary. Useful as a catalog of solutions once you
internalize them.

