ntroduction to Software
Architecture, Part 2

Michael Coblenz

Slide inspiration: David Garlan (https://www.cs.cmu.edu/~aldrich/courses/413/slides/21-architecture.pdf)

https://www.cs.cmu.edu/~aldrich/courses/413/slides/21-architecture.pdf

Reminder

» Software architecture I1s about promoting quality attributes

» Sometimes at the expense of other quality attributes

loday: Lots of Styles

» A style is a class of archrtectures

* Ltach style has a typical structure

Compare: Clothing Styles

» "Business casual I1s typically defined as no jeans, no shorts, no short

dresses or skirts for women, optional ties for men, and a rotation of
button-downs or blouses. Business casual dressing Is more about
avolding a list of "don'ts” than following a list of "dos” and can vary

slightly depending on style, preference, and gender presentation.”

https://www.thestreet.com/lifestyle/what-is-business-casual- [4629494

Compare: Clothing Styles

~In the ever-changmg Iandse of fashWIace, business casual can rangefrom.¢
‘J‘Fﬁ’ Is and button-downs. ; _

3 %m ders AND Jeremy Salvucci™ Updated Sep 25; 2024248 PM EDT

https://www.thestreet.com/lifestyle/what-is-business-casual- [4629494

FEIDES and rilters (One Style In the i
Flow" Family of Styles)

/Filtea\
-—I=|-- —
— L_FE

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

Pipes

Cxample:
Compillers

w i
usage (char "name)

printfCUsage:'n%;
printf(™ss A fc fle”,

Language 1 source code “w-blanguage 2 source code

Compiler front-end for language 1 Compiler front-end for language 2
Lexical Analyzer (Scanner) Lexical Analyzer (Scanner)

! !

Syntax/Semantic Syntax/Semantic
Analyzer (Parser) Analyzer (Parser)

Intermediate-code Intermediate-code
Generator Generator

Non-optimized intermediate code Non-optimized intermediate code

\ /

Intermediate code optimizer

Optimized intermediate code

Ta rg et-1 Ta rg et-2
Code Generator Code Generator

Target -1 machine code Target -2 machine code

| ﬁ E
] O

-xample: UNIX Pipes

E Lillers: processes

e Ports:stdin, staout, stderr
» PIpes: buffered streams

e Pipes carry byte streams (usually assume: U IF-8 strings)

PIpes Vs. Procedures

N

Control Asynchronous, data-driven Synchronous, blocking

WFunctional Hierarchical
hStreamed Parameter/return value

Variations Buffering, end-of-file Binding time, exception
behavior handling, polymorphism

Table from David Garlan

Analysis

» Quality attributes promoted:
o Modifiability: can insert or remove filters
e Modifiabllity: can redirect pipes
® [lelse
e Performance: enables parallel computation
o Quality attributes inhibrted:
o Usability: hard to build interactive applications this way
e Performance: may have to translate data to be sent on pipes
o (Costwriting filters may be complex due to common pipe data format

e |n some cases, correctness, If need to synchronize across pipes

[ayered Styles

Usually

procedure calls
Useful Systems

"

Core
Level

Composites of I

various elements Users

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

Example: Internet Protocol Suite

Data

UDP | UDP
header| data

IP

|IP data
header

Frame
header

Frame data

Frame
footer

Application

Transport

Internet

Link

Slide credit: Michael Hilton

[ayered Styles

* Note: we're talking about static entities here (classes, modules, etc.)
» Constraint: only invoke code at lower levels

» Variation: only the next level down

e Benefits:

» Changes only affect layer(s) above (not the whole system)

 Reuse (swap out iImplementation of a layer)

£ (ohisiderations:

 Hard to choose right layers

* Which layer does this code go in?

Example: macOS

(, =
User Experience

l Agqua l Dashboard | Spotlight || Accessibility |

Application Frameworks

| Carbon | Java l AppKit }-

Graphics and Media (Application Services)

lCore Ammatoonll Core Image “ Core Video II QuickTime |
l Il Il Core Audio l

Core Services

| Carbon Core llLaunch ServicesH Core Foundation |
i Darwin

https://developerapple.com/library/archive/documentation/Cocoa/Conceptual/CocoaFundamentals/VWhatlsCocoa/VMWhatlsCocoa.html#//apple_ref/doc/uid/TP40002974-CH3-SW | 6

Core frameworks

Foundation

|liers

» Organize clients and servers into tiers
I CORIAN | Tlers can be seen in a RUN TIME view

» |lers provide services above, rely on services below

Constrast: Layers

» [ayers appear In a module (static) view

3-Tiered Client-Server

* Promotes:
User lier

* security (user can't access data directly) e
USINESS | IElr

» performance (separate tiers can run on

Data [ier

separate hardware)

» avallabllity (replicate tiers)

[1ered Style Rules

* tach component Is In exactly one tier
£ BACh component can use services In:
* Any lower tier; or

« Next tier down

» Components {can or cannot} use components In same tier

Tiered Style Tradeofs

» Advantages:
* [lers reflect clean abstractions

* Promotes reuse

- Disadvantages:
» Unclear which tier a component belongs In
» What If a computation fits in multiple layers?

» Performance implications motivate inappropriate connections around layers (tunneling)

{unneling

Violates layering architecture...
but sure Is convenient!
Maybe also improves performance.

Client-Server Architecture

» Clients know who the server Is
» Server knows little about the clients (number; Identity)

* Agree on protocol In advance

Client/Server [radeofts

® Fomotes:

- Scalabllity: easy to add more clients, servers

- Moditiability: can swap out clients and servers separately

* Inhibits:

- Reliabllity (server/network may be down)

» Performance (network bandwidth, latency)
£ cunty (open ports)

» Simplicity (more fallure modes to test)

Publish-Subscribe Style
(Also Called "Implicit Invocation®

Subscribers
Publishers

Event bus

Key property: publishers don't know who is subscribed

Implicit Invocation

« Benefits:

e colibles publishers trom subscribers
* Promotes reuse: add a component by registering it for events
[oieniiiel probiems:
& lcer of event delivery Is not guaranteed
 Warning: bugs will result from accidentally depending on this order

» Choose: synchronous or asynchronous event processing

-ocus: Moditiability

Goal: iIdentify tactics that can improve modifiability

Source: https://resources.sel.cmu.edu/asset_files/ TechnicalReport/200/7_005_001_[4858.pdf (Bachmann, Bass, Nord)

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2007_005_001_14858.pdf

When Wil the Change Occur?

Design time Deployment time Execution time

Modification

Responsliollities

* A responsibility Is an action, knowledge to be maintained, or a decision to be

carried out by a software system or an element of that system. [Bachmann, Bass,
Nord]

» Responsibilities are assigned to modules
» But what Is the cost of modifying a responsibility?

» Responsibilities can be coupled: a modification to one can result in a
modification to the other

» Cost of modifying module A de

modules

e |dea: rec

Coupling

ucing coupling may rec

§ 10 reduce coupling:

LICE RO

fication costs

bends on how tightly-coupled It Is to other

* Minimze relationships among elements not In the same module

* Maximize relationships among elements In the same Mmoc

ule

Cohesion

» Put related responsibilities in the same module

* [o maximize modifiability, maximize cohesion & minimize coupling

Bl e

» Reducing the cost of modifying a single responsibility
» Split a Responsibility.

* |Increasing cohesion

t Hintaln >emantic Coherence.

£ Uilfact Common oervices.

» Reducing coupling

» Use Encapsulation.

® e a Vrappen

Ralse the A Dbstraction Level.

» Use an Intermediary.

& ealvict (ommunication Paths,

lactic |: Split a Responsibility

e (Goal: split so the new

modules can be A \ A
: SAx SA’x SA
modifiec
independently
A A > A Key:
« Also: enables Saow Module
. : <4—» Strength of
deferred binding i e couping

fie blace module A

at runtime)

i (lIc 2 Increase (ohesitn

* |dea: move responsibilities from one module to another

| P SA”x * SB”x t Key:
* Approach: put A" and B' in the same module o
<4—» Strength of
coupling
A A
SAx Sex v v
A” B
g I Sg” AB
v v
A B A,’ B SA’B’x
o -

Before After

But: How Do We Split a Module!

» 2.l:maintain semantic coherence (A', B' may need to change in the
future)

» 2.2:abstract common services (A', B' represent similar services)

§ | Ulse enca

Jactic 3: Reduce Coupling

C

D E
\\SAC /SAD /E
A

Before

Key:

MMMMMM

tttttttttt
coupling

bsulation (hide information in A)

B

After

MMMMMM

coupling

Add a Wrapper

» Encapsulation hides information
* Wrappers transform invocations

* (Yyes, the boundary Is fuzzy)

Ralse the Abstraction Level

» Usually: add parameters to Interface

» Makes the module more abstract, enables flexibility

Use an Intermediary, Restrict Communication
Paths

» Break dependency (but add a new one instead) e
Module
I SBx <4—» Strength of
coupling
I SBx B
B 1 SB intermediary
Intermediary
I SAB
i SA intermediary
A A
I SAX I SAX
Before

After

