
Introduction to Software 
Architecture: Views

Michael Coblenz





Software Architecture

The software architecture of a program or 
computing system is the structure or structures of 
the system, which comprise software elements, the 
externally visible properties of those elements, and 
the relationships among them.

		 	 	 	 [Bass et al. 2003]

3

Note: this definition is ambivalent to 
whether the architecture is known, or 

whether it’s any good!



Reminder: Two Kinds of Requirements
• Functional requirements: what the system should do

• "The system shall enable the user to read email."

• Generally, these are either met or not met (if not met, the system is unacceptable)

• Quality attributes: the degree to which the software works as needed

• "The system shall fetch 1 GB of email in under 1 minute."

• Sometimes called "non-functional requirements"

• Maintainability, modifiability, performance, reliability, security

• Generally, these can be achieved in degrees



Goal: Meet Quality Requirements
• Maintainability / Modifiability

• Performance

• Scalability

• Availability

• Usability

Key lesson: software 
architecture is about 
selecting a design that 
meets the desired 
quality attributes.



Abstraction

• Goal: Reason without understanding implementation details

• Approach:

• Divide enormous system into smaller pieces

• Define what those pieces do and how they relate to each other



Considerations for Decomposition

• Conceptual integrity (each piece is responsible for one "thing")

• Conway's Law (organizations inevitably produce copies of their org charts)

• Minimize coupling (avoid entangling separate modules)

• Maximize cohesion (everything in a module fits the theme)

• Use known-good solutions for prioritized quality attributes (see book)



Views

• Once you have a design, how do you draw it?









Views and Purposes

● Every view should align with a purpose 
● Views should only represent information relevant to that purpose 
○ Abstract away other details 
○ Annotate view to guide understanding where needed 

● Different views are suitable for different reasoning aspects (different 
quality goals), e.g., 
○ Performance 
○ Extensibility 
○ Security 
○ Scalability 
○ …

12



Architectural Structures
• Three kinds of structures:

● Components and connectors (runtime entities)

● Modules (static entities)

● Allocations (mapping of software to the real world)

● Each type has its own kind of view



Components and Connectors (for run time entities)

● These show: 
● Major executing components and 

interactions 
● Major shared data stores 
● Replicas 
● How data progresses through 

system 
● Which parts run in parallel 
● How structure can change at run 

time

Credit: Software Architecture in Practice



Component views (dynamic)

● Shows entities that exist at run time 
● Components (processes, runnable entities) and connectors (messages, 

data flow, …) 
● These do not exist until the program runs; cannot be shown in a static 

view

https://developer.chrome.com/blog/inside-browser-part1



Module Structures (for static entities)

● Show how responsibilities are held by code structures 
● Packages, classes, layers

Credit: Software Architecture in Practice



Module views (static)

● Shows structures that are defined by the code 
●Modules (subsystems, structures) and their relations (dependencies, …) 
●Often shows decompositions (a University consists of Departments) and 

uses (a Course uses a Classroom)

name
location

University

name
chair

Department

name
PID

Student

KEY
attribute 1
attribute 2

Module name

Module

Composition

Aggregation



Allocation Views (relate different kinds of dynamic components)

Credit: Software Architecture in Practice

● Example: deployment view shows how software artifacts are deployed 
on servers



Physical view (deployment)

● Hardware structures and their connections 
● Which parts of the system run on which physical machines? 
● How do those machines connect?



Why Document Architecture?

● Blueprint for the system 
○ Artifact for early analysis 
○ Primary carrier of quality attributes 
○ Key to post-deployment maintenance and enhancement 

● Documentation speaks for the architect, today and 20 years from today 
○ As long as the system is built, maintained, and evolved according to its documented 

architecture 

● Support traceability.

20



Software Architectural Styles

● A style describes a family of architectures 
● Each style promotes some quality attributes and inhibits others 
● Learning these patterns can enable you to make good architectural 

choices 
● Important: "pure" styles rarely occur in practice 
● But we can study them as if they were pure so we can focus on them 

individually 
● Each style includes: 
● Components or modules 
● Connectors that describe relationships between components or 

modules



Styles for your assignment

● You will choose some quality attributes to prioritize. 
● Look in the book (see link in assignment) for guidance on what techniques 

to use for the things you're focusing on. 
● Examples: 
● To promote modifiability, divide into modules so that the changes you 

have in mind will affect a small number of modules 
● To promote availability, use replicas (if one goes down, others will take 

the load) 
● I'd be surprised if this was a priority for your project!


