THE LIFE OF A SOFTWARE MUCH LATER...
ENGINEER .

OH MY. T’VE
DONE iT AGAIN),

CLEAN SLATE. SoLiD
FoUNDATIONS. THIS TIiME
T Will BuilLD THINGS THE

ENTEPRISE ARCHITECTURE MADE EASY

]

Architecture Overview

WHAT ARE THE
GREEN, BLUE AND
YELLOW THINGIES?
SERVERS?
APPLICATIONS?
COMPONENTS?

i UJ

.

/,

3ee4" & g

Architecture Overview

Architecture Overview

PART 1: DON'T MESS WITH THE
GORY DETAILS

Introduction to Software

Architecture
Michael Coblenz

Slide credit: Michael Hilton at CMU

Learning Goals

e Understand the abstraction level of architectural reasoning

e Appreciate how software systems can be viewed at different abstraction
levels

e Distinguish software architecture from (object-oriented) software design

e Use notation and views to describe the architecture suitable to the
purpose

e Document architectures clearly, without ambiguity

Software Architecture

The software architecture of a program or computing system
IS the structure or structures of the system, which
comprise software elements, the externally visible
properties of those elements, and the relationships among

them.
[Bass et al. 2003]

Note: this definition is ambivalent to

whether the architecture is known, or
whether it's any good!

Why Understand Architecture!?

§ e s/stemn has an arcnitecture

» But If you design the architecture intentionally, it's
ikely to be better!

e (s [ook at an example

—xample: Email Client

IMAP
interface

N

Email fetch View
< >
controller controller
New feature request:
~.______~ flexible email filters.
Email
database

—xample: Email Client

IMAP i Email fetch | View

interface controller controller
(with filter
code)

~.______~ Complaint: when new
Email mail arrives, it takes too
database | long to update.

Cause: controller re-
" filters all mail each time.

—xample: Email Client
IMAP § Email fetch .| View
interface controller controller
(with filter
code)
Complaint: My

emails don't fit on

my phone.

— | /
. Cache filter results
Emaill

database

N

ITwo Kinds of Requirements

* Functional requirements: what the system should do

= Ihe = stem shall enable the User to read emall.

 Generally, these are either met or not met (if not met, the system is unacceptable)
+ Quality attributes: the degree to which the software works as needed

¢ The system shall fetch [GB of emall in under | minute”

« Sometimes called "non-functional requirements"

* Maintainability, modifiability, performance, reliability, security

* Generally, these can be achieved in degrees

Goal: Meet Quality Requirements
« Maintainability / Modifiability

s Ferlormance

- Key lesson: software
* >calability architecture is about

selecting a design that
meets the desired
quality attributes.

* Avallability

« Usabllity

Another Perspective

 Quality requirements help designers choose from
among many different designs that all meet the
functional requirements.

Software Design vs. Architecture

Levels of Abstraction

e Requirements
o high-level “what” needs to be done

e Architecture (High-level design)
o high-level “"how”, mid-level “what”

e OO-Design (Low-level design, e.g. design patterns)

o mid-level “how”, low-level “what”

e Code

o low-level “how”

Design vs. Architecture

Design Questions

How do | add a menu item in
VSCode?

How can | make it easy to add menu
items in VSCode?

What lock protects this data?
How does Google rank pages?

What encoder should | use for secure
communication?

What is the interface between
objects?

15

Architectural Questions

How do | extend VSCode with a
plugin?

What threads exist and how do they
coordinate?

How does Google scale to billions of
hits per day?

Where should | put my firewalls?

What is the interface between
subsystems?

Objects

Model

16

Design Patterns

Factory

Observer

Model
/ Subject

Controller

Command

17

Design Patterns

Command
— o — —

D p TR

18

Design Patterns

T
L1
I

1

— L
—"
| S
L1 1

L=

= T

— —
1
= —
Factory

— View

r
|

1

19

Architecture

= ﬂ H LL
mﬁfﬂg--w-mmuﬂmnﬂ_uﬁ.u@u m
il e =
ST
T AT AR DB zm
L j}ﬁafr m
AT
Tt By
Ll

20

Architecture

r—-r——=-=-=-=-=====11

21

Architecture

|
! |
! |
: |
! |
! |
: |
! |
g S - et
s S5
| __
o
(LI ;! " _
__—le _ II___ |
N 4 - |
i Kn " |
1 " ___ !
___ i1 “__ :
i ! _“_ I
eI S |
AT i “
\ Ao A]
s bl
I v
| 11 _
I 11 _
o _
" <4 “
|
L “
L |__ ||||| ._
-7 L e e e e e e e -

22

Next concept: views

e Often, there's too much information for you to show it all at once.

A —

SD’ San Diego Fire Dispatch Online Public Map n—

Find address or place

“

O+ +

|

PriorityDescription 1a Level 1a Medical
ResponseDate 2/4/2024,7:27 PM

Zoom to

RAMAR RANCH

o T | 4 G5 W R y 7,
. i 57 saBRE B o
SPRINGS| & —
CARMEL VALLEY. 3 J i
J s = Wi,
W Z0BREY) DEL MAR MESA o %
. e / [T
- ’
a 7 57 if Y ot
: s oo~ N
RANCHINORTH A RANCHO ENCANTADA \ J}
RE £%
ORRENTO S
ﬁ" SCRIPPS ' T o
) -
) &~

J'/ MILITARY FACILITIES
EAST ELTIOTT 4

805,
\ |
KEARNY MESA

NAVAJO

MISSION|

i g

MID;CITY Yy
KENSINGTON,
TALMADGE
|

Pacific Ocean

Figure PF-8
Gas and Electric Substations
and Transmission Lines

B Substations

Electric Transmission Tieline

Why Document Architecture?

e Blueprint for the system
o Artifact for early analysis
o Primary carrier of quality attributes
o Key to post-deployment maintenance and enhancement
e Documentation speaks for the architect, today and 20 years from today
o As long as the system is built, maintained, and evolved according to its documented
architecture

e Support traceability.

28

Views and Purposes

e Everyview should align with a purpose

e Views should only represent information relevant to that purpose
o Abstract away other details
o Annotate view to guide understanding where needed

e Different views are suitable for different reasoning aspects (different
quality goals), e.g.,
o Performance
o Extensibility

o Security
o Scalability

29

Module views (static)

e Shows structures that are defined by the code

e Modules (subsystems, structures) and their relations (dependencies, ...)

e Often shows decompositions (a University consists of Departments) and
uses (a Course uses a Classroom)

University
KEY Module name name
location
attribute 1
Module)
attribute 2
Composition - Student Department
.

Aggregation < name > | name
PID chair

Component views (dynamic)

e Shows entities that exist at run time
e Components (processes, runnable entities) and connectors (messages,

data flow, ...)
e These do not exist until the program runs; cannot be shown in a static

view
Browser Process Utility Process
.......................... A Y
2 R s
..... y.> o
P2 o s ’
ey § Qpesssssssssssssssss
W r GPU Process
4 o SURNRRPTTELLL i (R
JURORCTELT Ll ;] <
._ f J»::::g
Renderer Process
.
o Bh@ﬁ) e .' Plugin Process
....... > .
e BT G :
. o
I T

https://developer.chrome.com/blog/inside-browser-part1

Physical view (deployment)

e Hardware structures and their connections

e Which parts of the system run on which physical machines?
e How do those machines connect?

e Example (you choose)

Software Architectural Styles

e A style describes a family of architectures

e Each style promotes some quality attributes and inhibits others

e Learning these patterns can enable you to make good architectural
choices

e Important: "pure" styles rarely occur in practice

e But | will teach them as pure so we can study them individually
e Each style includes:

e Components or modules

e Connectors that describe relationships between components or
modules

1. Pipes and Filters (one style in the "data flow" family of styles)

Filters

i :l " e

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

wi
usage char name)

prnttCUsage nY;
PILICYs a be fiet,
name f;

e Language 1 source code

ndit

-Language 2 source code

: '
ZIMerLOFI publk i mancsnoll ol |
b

Exa m p I e: il '
[]
CO m p I I ers Compiler front-end for language 1 Compiler front-end for language 2

Lexical Analyzer (Scanner) Lexical Analyzer (Scanner)
Syntax/Semantic Syntax/Semantic

Analyzer (Parser) Analyzer (Parser)
Intermediate-code Intermediate-code

Generator Generator

Non-optimized intermediate code Non-optimized intermediate code

Intermediate code optimizer
Optimized intermediate code

/ \

Target-1 Target-2
Code Generator Code Generator
lTarget—l machine code lTarget—Z machine code

)
- ‘
e ’\‘ ~ ~ O
N S~

Example: UNIX pipes

e Filters: processes
e Ports: stdin, stdout, stderr
e Pipes: buffered streams
e Pipes carry byte streams (usually assume: UTF-8 strings)

Pipes vs. Procedures

I
Binary Binary
Asynchronous, data-driven Synchronous, blocking
W Functional Hierarchical

r Streamed Parameter/return value

Variations Buffering, end-of-file Binding time, exception
behavior handling, polymorphism

Table from David Garlan

Analysis

e Quality attributes promoted:

Modifiability: can insert or remove filters
Modifiability: can redirect pipes

Reuse

Performance: enables parallel computation

e Quality attributes inhibited:

Usability: hard to build interactive applications this way
Performance: may have to translate data to be sent on pipes
Cost: writing filters may be complex due to common pipe data

format
In some cases, correctness, if need to synchronize across pipes

