Slide credit for this deck: both William Griswold (UCSD) and Michael Hilton (CMU)

Program testing can be used to show the presence of bugs,
but never to show their absence! -- Edsger Dijkstra

WE ADDED A NEW
PERFORMANCE TEST,
BUT LEARNED THAT THE
TEST ITSELF IS FLAWED.

NOW OUR PRODUCT
FAILS OUR OWN
TESTS AND OUR
CUSTOMERS ARE

ASKING TO SEE THE
TEST RESULTS.

DO I HAVE I DIDN'T
PERMISSION EVEN
TO FAKE THE kNOW
TEST DATA? DATA

) CAN BE

Dilbert.com DilbertCartoonist@gmail.com
2110 ©2000 Scott Adams, Inc./Dist. by UFS, Inc.

What makes a good test suitee

You tell me.

Defining correct behavior

Example-based: “For a given input, some assertions should be frue”

Properties: “Output should should satisty some property for all inputs
INn some class”

‘It doesn’t crash’

Invariance: “Changing the input in some way should maintain the
same output”

Regression: "It provides the same output as it used to”

Differential: “Two systems implementing the same spec should
provide the same output”

Human oracle: “For @ gBNen user, they should be safisfied”
Slide credit: adapted from Jonathan Bell (CC BY- SA)

) Nc?T only are tests L_Jsed to
The Many Purposes of Testing [iireiidusused

. testing (later in this
Find bugs lecture).

Hard to prove of the absence of bugs (Dijkstra)

Prevent bugs from sneaking in during enhancement
(Regression Testing)

Loose synchronization among developers/teams can result in
Incorrect use or enhancement of existing code

Give high confidence in the intfegrity of your product

Explore class/method design (Test-First/Test-Driven
Development and/or DbC)

Specification of expected behavior

The THREE BIG IDEAS of Software Testing
Coverage: Seek to execute all possibilities.

(but does running a line mean you've "covered" it¢)
Test Equivalence Classes:
Tests should all cover different things.

That's still foo many, so...

Bottom-Up Testing: When testing if something works, its parts
should already be tested. We test just the current level,
reducing the explosion of combinations.

Bottom-Up Testing and the Hierarchical Structure of

Agile Planning and Delivery

Milestone 1 €

- mm -
e
€

For example, Iteration testing
assumes that the individual
Stories/Features work, and tests
how the Stories glue together.

User, System Testing

(perf, robustness, user experience)
(i.e., End-to-End Scenarios + Personas)

Acceptance Testing
(customer demo, End-to-End Scenarios)

Story Testing (features)
(acceptance criteria)

Unit Testing (methods)
(black/gray/white box)

Each level of testing assumes all the lower levels of
tests have passed. Only test for the “current-level” risk.

Black box vs. white box festing

Black box testing: do not look inside the component being
tested.

Pro: not biased by implementation details
Con: can't leverage opportunities

White box testing: consider the implementation of the
component being tested.

Pro: exploit possible weaknesses
Con: may miss "impossible” bugs

Gray box testing: somewhere in the middle

Agile Testing: Hierarchical, Diverse (80/20)

Write three kinds of tests, boffom up:

1. Task level: Unit tests for critical units (black-box and/or white-box)

2. Story/Iteration-level: BDD scenario tests (in unit
O Automating all could be expensive; some by

3. lteration/Milestone-level: End-to-end Scenario |
(“run” by hand - already done, from product ¢

O Addifionally consider Personas, platforms/con
people

Diversitication beyond the hierarchy:

Asserts from DbC
Logging for hard-to-test code (grey-box)

or BDD tester)
nand

'ests

esign)
figurations, real

Include tfime for testing during Planning

Write tests for high-risk unifs

For each story, have a testing task
Could have two: one for writing tests, one for passing

For a sprint, have a ftesting Story or “loose”™ Task
This is a “Developer Story’: As a developer, | want...
End-to-End Scenarios, e.g.

For Milestone, have a testing Iteration or loose Story/
Task

longer End-to-End Scenarios, e.g.

Testing early-stage software

You want to test module A
But A depends on module B.
Module B isn't ready yet.
What do?

Another sitfuation

Want to test code that depends on the current time
Or the network
Or the disk

Now whate

Solution: mocking

New class: MockCalendar
class MockCalendar extends Calendar {

¥

long millis;
MockCalendar(long millis) {this.millis = millis;}
static MockCalendar getInstance()

{ return new MockCalendar(millis); }
long getTimeInMillis() { return millis; }
void setTimeInMillis(long ms) { millis = ms; }
.. // Lots of stubbed methods that we don’t use

Pass MockCalendar instance into code to be tested.

Advanced Testing

Or: how to avoid writing tests manually (sometimes). Credit: CMU S3D (Michael Hilton)

Puzzle: Find x such p1(x) returns True

def pl(x):
if x * x - 10 == 15:
return True
return False

14

Puzzle: Find x such p2(x) returns True

def p2(x):
if x > @ and x < 1000:
if ((x - 32) * 5/9 == 100):
return True
return False

15

Puzzle: Find x such p3(x) returns True

def p3(x):
if x > 3 and x < 100:
Z =X - 2
cC =0

while z >= 2:
if z ** (x - 1) % x ==
c=c+1
z =2z -1
if ¢ == x - 3:
return True
return False

16

Fuzz Testing

Security and Robustness

Barton P. Miller, Lars Fredriksen and Bryan So

Study of the
Reliability of

m.w
Ll ol ber 1990/ Vol.33, No.12 33

COMMUNICATIONS OF THE ACM/ December

Communications of the ACM (1990)

14

On a
dark and stormy night one of the
authors was logged on to his work-
station on a dial-up line from home
and the rain had affected the
phone lines; there were frequent
spurious characters on the line.
The author had to race to see 1if he

ould type a sensible sequence of
haracters betore the noise scram-
bled the command. This line noise
was not surprising; but we were
surprised that these spurtous char-
acters were causing programs to

crash.

29

Fuzz Testing

[/dev/random

J

w0019[a%#

Execute
| g

> Program

A 1990 study found crashes
in:

adb, as, bc, cb, col, diction,
emacs, eqn, ftp, indent, lex,
look, m4, make, nroff, plot,
prolog, ptx, refer!, spell, style,
tsort, uniq, vgrind, vi

Common Fuzzer-Found Bugs in C/C++

Causes: incorrect arg validation, incorrect type
casting, executing untrusted code, etc.

Effects: buffer-overflows, memory leak, division-by-

zero, use-after-free, assertion violation, etc. (“crash”)

Impact: security, reliability, performance,

correctness

But: bugs don't always result in crashes.

int *x = malloc(sizeof(int));
free(x);
printf("sd", *x);

How do you make programs “crash” when a bug is encountered?

Automatic Oracles: Sanitizers

e Address Sanitizer (ASAN) ***

e LeakSanitizer (comes with ASAN)

e Thread Sanitizer (TSAN)

e Undefined-behavior Sanitizer (UBSAN)

https://github.com/google/sanitizers

https://github.com/google/sanitizers

AddressSanitizer Compile with “clang —fsanitize=address"

Is the access out of bounds?

int get_element(int* a, int i) {
if (a == NULL) abort();

int get element(int* a, int 1) { region - get_allocation(a);

if (in_heap(region)) {

r‘etu N a [i] ; low, high = get_bounds(region);

if ((@a + 1) < low || (a +i) > high) {
} abort();
}

) }
Is it null? return a[i];

}
int get_element(int* a, int i) {
if (a == NULL) abort();
return a[i];

}

Is this a reference to a stack-allocated variable after return?

int get_element(int* a, int i) {
if (a == NULL) abort();
region = get_allocation(a);
if (in_stack(region)) {
if (popped(region)) abort();

, -
if (in_heap(region)) { ... }
return a[i];

AddressSanitizer Compile with “clang —fsanitize=address"

int get_element(int* a, int i) {
return a[i];
}

Is it null?

int get_element(int* a, int 1) {
if (a == NULL) abort();
return a[i];

AddressSanitizer Compile with “clang —fsanitize=address"

int get_element(int* a, int i) {
return a[i];

¥

int get element(int* a, int i) {
if (a == NULL) abort();
region = get_allocation(a);
if (in_heap(region)) {
low, high = get_bounds(region);
if ((a + i) < low || (a +i) > high) {
abort();
}
}

return a[i];

Is the access out of bounds?

¥

AddressSanitizer Compile with “clang —fsanitize=address"

Is this a reference to a stack-allocated variable after return?

int get element(int* a, int i) {
if (a == NULL) abort();
region = get _allocation(a);
if (in_stack(region)) {
if (popped(region)) abort();

} .
if (in_heap(region)) { ... }
return af[i];

AddressSanitizer

https://github.com/google/sanitizers/wiki/AddressSanitizer

Asan is a memory error detector for C/C++. It finds:

O

O

O

Use after free (dangling pointer dereference)
Heap buffer overflow
Stack buffer overflow

Global buffer overflow
Use after return Slowdown about 2x on SPEC CPU 2006

average

56 e as i71.0mnetpp 433 auncbmk 4« ramd
400.per benc 464 h264 ef. 473, 447 deall

Use after scope
Initialization order bugs
Memory leaks

Strengths and Limitations

Strengths:
Cheap to generate inputs
Easy to debug when a failure is identified

Limitations:
Randomly generated inputs don’t make sense most of the time.

E.g. Imagine testing a browser and providing some "input”
HTML randomly: dgsad51350 gsd;gj Isdkg3125j@!
T%#(W+123sd asf j

Unlikely to exercise interesting behavior in the web browser
Can take a long time to find bugs. Not sure when to stop.

28

Mutation-Based Fuzzing (e.g. Radamsa)

<foo></foo>

Random
Mutation <w00>?</00>

Pick I Execute
» nput -
» In put’ % Program

Initial

>

29

Mutation Heuristics

Binary input
= Bit flips, byte flips
= Change random bytes
= Insert random byte chunks
= Delete random byte chunks
= Set randomly chosen byte chunks to interesting values e.g. INT_MAX, INT_MIN, O, 1, -1, ...

Text input

= Insert random symbols relevant to format (e.g. “<” and “>" for xml)
= Insert keywords from a dictionary (e.g. “<project>" for Maven POM.xml)

GUI input
= Change targets of clicks

Change type of clicks
Select different buttons
Change text to be entered in forms

... Much harder to design

Coverage-Guided Fuzzing (e.g. AFL)

Initial
>

Add
Input’

<foo></foo>

Random
Mutation <w00>?</00>

Execution feedback

coverage]

New

branch
coverage?

31

: Execute

2

Coverage
Instrumentation

%

Coverage-Guided Fuzzing with AFL

November 07, 2014

Pulling JPEGs out of thin air

This is an interesting demonstration of the capabilities of afl; I was actually pretty
’_1‘—'1'"—1"—"_—"'—‘|'_1"_]T'_H—H—U_IT'—T’—I"__”"—’F_—'F—"F_"W:']

: : | :
surprised that it worked! aEEEERER. S8 URE=eEuE B

EEEEEEEEEEEEE R EEE R
SOOI ORI
[—‘“’W’—‘W'—'hx—*r—'r—mﬂﬁ'—l],n—w—w—mﬁhﬁv—l

$ mkdir in dir
$ echo 'hello' >in dir/hello
$./afl-fuzz -i in_dir -o out_dir ./jpeg-9&

r-ﬂ—ﬁ—wr—qr—'v—vr—rrﬂr—u—ﬂv—w_lr—l’_‘“‘?r‘“r‘—'r“”r“‘r_‘ﬁ

o J e e i J e - - - -
https://Icamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

32

ClusterFuzz @ Chromium

G bUgS chromium ~ All issues

D ~

1133812

1133763

1133701

1133254

1133124

1133024

1132958

1132907

Stars v

2

ReleaseBlock ~

~ Q_ label:ClusterFuzz -status:Duplicate

Component ~

1- 100 of 25423 Next » List

Status -

BIink>GetUserMedi Untriaged

Blink>=JavaScript

Internals>Network

Ul>Accessibility,
Blink>Accessibility

Blink>=JavaScript>GC

Untriaged

Untriaged

Untriaged

Untriaged

Started

Assigned

Assigned

Owner ~

dmcardle@ch

sin...@chromi

dinfuehr@chr

Property-based testing

Manually writing tesfs:

- WOrk
- requires creativity

- biased toward your expectations of where bugs
are

+ precise (test relevant use cases)

+ can test basically anything

Can we generate lots of testse

First, write down a property that a function should have, and a range:

@given(s.integers(min_value=-(10 x* 6), max_value=10 *xx 6))
def test_factorize_multiplication_property(n):
"""The product of the integers returned by factorize(n) needs to be n.
factors = factorize(n)
product =1
for factor in factors:
product *= factor

assert product == n, f"factorize({n}) returned {factors}"

Then, run Hypothesis, which searches the space...

35

================================== test session starts ==================================
platform linux -- Python 3.8.4, pytest-6.0.1, py-1.9.0, pluggy-0.13.1

rootdir: /home/moose/GitHub/MartinThoma/algorithms/medium/property-based-testing

plugins: hypothesis-5.23.8

collected 9 items

test factorize parametrize.py
test factorize property.py

@given(s.integers(min_value=-(10 ** 6), max_value=10 ** 6))
> def test factorize multiplication_property(n):

@given(s.integers(min_value=-(10 ** 6), max_value=10 ** 6))

def test factorize multiplication_property(n):
"""The product of the integers returned by factorize(n) needs to be n.
factors = factorize(n)

product = 1
for factor in factors: .
product *= factor Qops! fOCTOI’IZG(5)
> assert product == n, f"factorize({n}) returned {factors}" returned an emp’ry list of
factors!
:16: AssertionError

——————————————————————————————————————— Hypothesils -------cmmmmm i e o
Falsifying example: test factorize multiplication_property(

e Short teSt Summary info e
FAILED test factorize property.py::test factorize multiplication_property - AssertionEr...

9

Generating tests

Mutate existing "inferesting” iInputs

e.g. apply tfransformations to iImages

Can you relate input transformations to output
transformationse

Rotate input -> expect rotated output

Slide credit: adapted from Jonathan Bell (CC BY-SA)

Regression Testing

Goal: know if something changed

Try snapshot tests
First time: record output

Later: compare output to saved output
Useful with GUIs, API testing

Slide credit: adapted from Jonathan Bell (CC BY-SA)

Testing user intertaces

Need humans!

Could try A/B tests to see if a real change impacts
users

Slide credit: adapted from Jonathan Bell (CC BY-SA)

Avolding Flaky Tests

Ensure a consistent starting configuration

Ensure consistent cleanup
Test order dependencies

Control asynchronous starfup .., Cliont

Start Wait 3 secs for server to start
Make request to server

No response. Test failed!

Ready

Slide credit: adapted from Jonathan Bell (CC BY-SA)

40

