
  Testing
Program testing can be used to show the presence of bugs, 
but never to show their absence! -- Edsger Dijkstra

 1

Slide credit for this deck: both William Griswold (UCSD) and Michael Hilton (CMU)



What makes a good test suite?
¤You tell me.

2



Defining correct behavior
¤Example-based: “For a given input, some assertions should be true” 

¤Properties: “Output should should satisfy some property for all inputs 
in some class" 

¤“It doesn’t crash” 

¤Invariance: “Changing the input in some way should maintain the 
same output” 

¤Regression: “It provides the same output as it used to” 

¤Differential: “Two systems implementing the same spec should 
provide the same output” 

¤Human oracle: “For a given user, they should be satisfied”
3Slide credit: adapted from Jonathan Bell (CC BY-SA)



The Many Purposes of Testing
¤Find bugs 

¤Hard to prove of the absence of bugs (Dijkstra) 

¤Prevent bugs from sneaking in during enhancement 
(Regression Testing) 
¤Loose synchronization among developers/teams can result in 

incorrect use or enhancement of existing code 

¤Give high confidence in the integrity of your product 

¤Explore class/method design (Test-First/Test-Driven 
Development and/or DbC) 

¤Specification of expected behavior

4

Not only are tests used to 
drive software design, but 
we design our software for 
testing (later in this 
lecture).



The THREE BIG IDEAS of Software Testing
Coverage:  Seek to execute all possibilities. 

  (but does running a line mean you've "covered" it?) 

Test Equivalence Classes:  

Tests should all cover different things. 

 That’s still too many, so… 

Bottom-Up Testing: When testing if something works, its parts 
should already be tested.  We test just the current level, 
reducing the explosion of combinations.

5



Bottom-Up Testing and the Hierarchical Structure of 
Agile Planning and Delivery

6

ç Story Testing (features) 
       (acceptance criteria)

ç Acceptance Testing 
       (customer demo, End-to-End Scenarios)

ç   User, System Testing 
       (perf, robustness, user experience) 
        (i.e., End-to-End Scenarios + Personas)

ç Unit Testing (methods) 
        (black/gray/white box)

Each level of testing assumes all the lower levels of 
tests have passed. Only test for the “current-level” risk.

For example, Iteration testing 
assumes that the individual 
Stories/Features work, and tests 
how the Stories glue together.

Milestone 1

Iteration 
1

Iteration 
2

Iteration n…

US 1 US 2 US 3 US 4 US 5 US 6 US 7

…

Project

T1 T2 T3 T1 T2 T1 T2 T1 T2 T3…



Black box vs. white box testing
¤Black box testing: do not look inside the component being 

tested. 

¤Pro: not biased by implementation details 

¤Con: can't leverage opportunities 

¤White box testing: consider the implementation of the 
component being tested.  

¤Pro: exploit possible weaknesses 

¤Con: may miss "impossible" bugs 

¤Gray box testing: somewhere in the middle
7



Agile Testing: Hierarchical, Diverse (80/20)
¤Write three kinds of tests, bottom up: 

1. Task level: Unit tests for critical units (black-box and/or white-box) 
2. Story/Iteration-level: BDD scenario tests (in unit or BDD tester) 
¤Automating all could be expensive; some by hand 

3. Iteration/Milestone-level: End-to-end Scenario tests 
(“run” by hand - already done, from product design) 
¤Additionally consider Personas, platforms/configurations, real 

people 

¤Diversification beyond the hierarchy: 
¤Asserts from DbC 
¤Logging for hard-to-test code (grey-box)

8



Include time for testing during Planning
Write tests for high-risk units 

For each story, have a testing task 

¤Could have two: one for writing tests, one for passing 

For a sprint, have a testing Story or “loose” Task 
¤This is a “Developer Story”: As a developer, I want… 
¤End-to-End Scenarios, e.g. 

For Milestone, have a testing Iteration or loose Story/
Task 
¤longer End-to-End Scenarios, e.g.

9



Testing early-stage software
¤You want to test module A 

¤But A depends on module B. 

¤Module B isn't ready yet. 

¤What do?

10

A B



Another situation
¤Want to test code that depends on the current time 

¤Or the network 

¤Or the disk 

¤Now what?

11



Solution: mocking
¤New class: MockCalendar 
class	MockCalendar	extends	Calendar	{	
		long	millis;	
		MockCalendar(long	millis)	{this.millis	=	millis;}	
		static	MockCalendar	getInstance()	
					 	 	 {	return	new	MockCalendar(millis);	}	
		long	getTimeInMillis()	{	return	millis;	}	
		void	setTimeInMillis(long	ms)	{	millis	=	ms;	}	
		…	//	Lots	of	stubbed	methods	that	we	don’t	use	
}	

Pass	MockCalendar	instance	into	code	to	be	tested.

12



Advanced Testing
Or: how to avoid writing tests manually (sometimes). Credit: CMU S3D (Michael Hilton)

13



Puzzle: Find x such p1(x) returns True

def	p1(x):	
		if	x	*	x	–	10	==	15:	
				return	True	
		return	False

14



Puzzle: Find x such p2(x) returns True

def	p2(x):		
		if	x	>	0	and	x	<	1000:	
				if	((x	-	32)	*	5/9	==	100):	
						return	True	
		return	False

15



Puzzle: Find x such p3(x) returns True

def	p3(x):	
		if	x	>	3	and	x	<	100:	
				z	=	x	-	2	
				c	=	0	
				while	z	>=	2:	
						if	z	**	(x	-	1)	%	x	==	1:	
								c	=	c	+	1	
						z	=	z	-	1	
				if	c	==	x	-	3:	
						return	True	
		return	False

16



Security and Robustness

17

Fuzz Testing



18

Communications of the ACM (1990)

“

”



Fuzz Testing

19

Input ProgramExecute
w0o19[a%#

A 1990 study found crashes 
in:  
adb, as, bc, cb, col, diction, 
emacs, eqn, ftp, indent, lex, 
look, m4, make, nroff, plot, 
prolog, ptx, refer!, spell, style, 
tsort, uniq, vgrind, vi

/dev/random



Common Fuzzer-Found Bugs in C/C++

Causes: incorrect arg validation, incorrect type 
casting, executing untrusted code, etc. 

Effects: buffer-overflows, memory leak, division-by-
zero, use-after-free, assertion violation, etc. (“crash”) 

Impact: security, reliability, performance, 
correctness



But: bugs don't always result in crashes.  

int *x = malloc(sizeof(int)); 
free(x); 
printf("%d", *x);

How do you make programs “crash” when a bug is encountered?



Automatic Oracles: Sanitizers

● Address Sanitizer (ASAN)   *** 
● LeakSanitizer (comes with ASAN) 
● Thread Sanitizer (TSAN) 
● Undefined-behavior Sanitizer (UBSAN) 

https://github.com/google/sanitizers 

https://github.com/google/sanitizers


AddressSanitizer

int	get_element(int*	a,	int	i)	{	
			return	a[i];	
}

int	get_element(int*	a,	int	i)	{	
			if	(a	==	NULL)	abort();				
			return	a[i];	
}

int	get_element(int*	a,	int	i)	{	
			if	(a	==	NULL)	abort();				
			region	=	get_allocation(a);	
			if	(in_heap(region))	{	
					low,	high	=	get_bounds(region);	
					if	((a	+	i)	<	low	||	(a	+i)	>	high)	{	
							abort();	
					}	
			}	
			return	a[i];	
}

int	get_element(int*	a,	int	i)	{	
			if	(a	==	NULL)	abort();				
			region	=	get_allocation(a);	
			if	(in_stack(region))	{		
					if	(popped(region))	abort();	
					…	
			}	
			if	(in_heap(region))	{	...	}	
			return	a[i];	
}

Is it null?

Is the access out of bounds?

Is this a reference to a stack-allocated variable after return?

Compile with `clang –fsanitize=address`



AddressSanitizer

int	get_element(int*	a,	int	i)	{	
			return	a[i];	
}

int	get_element(int*	a,	int	i)	{	
			if	(a	==	NULL)	abort();				
			return	a[i];	
}

Is it null?

Compile with `clang –fsanitize=address`



AddressSanitizer

int	get_element(int*	a,	int	i)	{	
			return	a[i];	
}

int	get_element(int*	a,	int	i)	{	
			if	(a	==	NULL)	abort();				
			region	=	get_allocation(a);	
			if	(in_heap(region))	{	
					low,	high	=	get_bounds(region);	
					if	((a	+	i)	<	low	||	(a	+i)	>	high)	{	
							abort();	
					}	
			}	
			return	a[i];	
}

Is the access out of bounds?

Compile with `clang –fsanitize=address`



AddressSanitizer

int	get_element(int*	a,	int	i)	{	
			if	(a	==	NULL)	abort();				
			region	=	get_allocation(a);	
			if	(in_stack(region))	{		
					if	(popped(region))	abort();	
					…	
			}	
			if	(in_heap(region))	{	...	}	
			return	a[i];	
}

Is this a reference to a stack-allocated variable after return?

Compile with `clang –fsanitize=address`



AddressSanitizer

Asan is a memory error detector for C/C++. It finds: 
○ Use after free (dangling pointer dereference) 
○ Heap buffer overflow 
○ Stack buffer overflow 
○ Global buffer overflow 
○ Use after return 
○ Use after scope 
○ Initialization order bugs 
○ Memory leaks

https://github.com/google/sanitizers/wiki/AddressSanitizer

Slowdown about 2x on SPEC CPU 2006



Strengths and Limitations

● Strengths: 
○ Cheap to generate inputs 

○ Easy to debug when a failure is identified 

● Limitations: 
○ Randomly generated inputs don’t make sense most of the time. 

■ E.g. Imagine testing a browser and providing some ”input” 
HTML randomly: dgsad5135o gsd;gj lsdkg3125j@!
T%#( W+123sd asf j 

○ Unlikely to exercise interesting behavior in the web browser 

○ Can take a long time to find bugs. Not sure when to stop.

28



Mutation-Based Fuzzing (e.g. Radamsa)

29

InputPick
Input’

Random  
Mutation

Program
ExecuteInitial

Input

Input

Input

Input

Seeds <foo></foo>

<woo>?</oo>



Mutation Heuristics
▪ Binary input 

▪ Bit flips, byte flips 
▪ Change random bytes 
▪ Insert random byte chunks 
▪ Delete random byte chunks 
▪ Set randomly chosen byte chunks to interesting values e.g. INT_MAX, INT_MIN, 0, 1, -1, … 

▪ Text input 
▪ Insert random symbols relevant to format (e.g. “<“ and “>” for xml) 
▪ Insert keywords from a dictionary (e.g. “<project>” for Maven POM.xml) 

▪ GUI input 
▪ Change targets of clicks 
▪ Change type of clicks 
▪ Select different buttons 
▪ Change text to be entered in forms 
▪ … Much harder to design



Coverage-Guided Fuzzing (e.g. AFL)

Save?

Execution feedback

No

Yes

Add 
Input’

Coverage 
Instrumentation

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
New 

branch 
coverage?

31

InputPick Input’

Random  
Mutation

Program
ExecuteInitial

Input

Input

Input

Input

Seeds <foo></foo>

<woo>?</oo>



Coverage-Guided Fuzzing with AFL

32

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html



ClusterFuzz @ Chromium



Property-based testing
¤Manually writing tests: 

¤- work 

¤- requires creativity 

¤- biased toward your expectations of where bugs 
are 

¤+ precise (test relevant use cases) 

¤+ can test basically anything
34



Can we generate lots of tests?
First, write down a property that a function should have, and a range: 

@given(s.integers(min_value=-(10 ** 6), max_value=10 ** 6)) 

def test_factorize_multiplication_property(n): 

    """The product of the integers returned by factorize(n) needs to be n.""" 

    factors = factorize(n) 

    product = 1 

    for factor in factors: 

        product *= factor 

    assert product == n, f"factorize({n}) returned {factors}"

35

Then, run Hypothesis, which searches the space… 



36

Oops! factorize(5) 
returned an empty list of 
factors!



Generating tests
¤Mutate existing "interesting" inputs 

¤e.g. apply transformations to images 

¤Can you relate input transformations to output 
transformations? 

¤Rotate input -> expect rotated output

37
Slide credit: adapted from Jonathan Bell (CC BY-SA)



Regression Testing
¤Goal: know if something changed 

¤Try snapshot tests 

¤First time: record output 

¤Later: compare output to saved output 

¤Useful with GUIs, API testing

38
Slide credit: adapted from Jonathan Bell (CC BY-SA)



Testing user interfaces
¤Need humans! 

¤Could try A/B tests to see if a real change impacts 
users

39
Slide credit: adapted from Jonathan Bell (CC BY-SA)



Avoiding Flaky Tests
¤Ensure a consistent starting configuration 

¤Ensure consistent cleanup 

¤Test order dependencies 

¤Control asynchronous startup

40

Server Client

Start

Ready

Wait 3 secs for server to start

Make request to server

No response. Test failed!

Slide credit: adapted from Jonathan Bell (CC BY-SA)


