
 Testing
Program testing can be used to show the presence of bugs,
but never to show their absence! -- Edsger Dijkstra

￼1

Slide credit for this deck: both William Griswold (UCSD) and Michael Hilton (CMU)

What makes a good test suite?
You tell me.

2

Defining correct behavior
Example-based: “For a given input, some assertions should be true”

Properties: “Output should should satisfy some property for all inputs
in some class"

“It doesn’t crash”

Invariance: “Changing the input in some way should maintain the
same output”

Regression: “It provides the same output as it used to”

Differential: “Two systems implementing the same spec should
provide the same output”

Human oracle: “For a given user, they should be satisfied”
3Slide credit: adapted from Jonathan Bell (CC BY-SA)

The Many Purposes of Testing
Find bugs

Hard to prove of the absence of bugs (Dijkstra)

Prevent bugs from sneaking in during enhancement
(Regression Testing)
Loose synchronization among developers/teams can result in

incorrect use or enhancement of existing code

Give high confidence in the integrity of your product

Explore class/method design (Test-First/Test-Driven
Development and/or DbC)

Specification of expected behavior

4

Not only are tests used to
drive software design, but
we design our software for
testing (later in this
lecture).

The THREE BIG IDEAS of Software Testing
Coverage: Seek to execute all possibilities.

 (but does running a line mean you've "covered" it?)

Test Equivalence Classes:

Tests should all cover different things.

	 That’s still too many, so…

Bottom-Up Testing: When testing if something works, its parts
should already be tested. We test just the current level,
reducing the explosion of combinations.

5

Bottom-Up Testing and the Hierarchical Structure of
Agile Planning and Delivery

6

 Story Testing (features)
 (acceptance criteria)

 Acceptance Testing
 (customer demo, End-to-End Scenarios)

 User, System Testing
 (perf, robustness, user experience)
 (i.e., End-to-End Scenarios + Personas)

 Unit Testing (methods)
 (black/gray/white box)

Each level of testing assumes all the lower levels of
tests have passed. Only test for the “current-level” risk.

For example, Iteration testing
assumes that the individual
Stories/Features work, and tests
how the Stories glue together.

Milestone 1

Iteration
1

Iteration
2

Iteration n…

US 1 US 2 US 3 US 4 US 5 US 6 US 7

…

Project

T1 T2 T3 T1 T2 T1 T2 T1 T2 T3…

Black box vs. white box testing
Black box testing: do not look inside the component being

tested.

Pro: not biased by implementation details

Con: can't leverage opportunities

White box testing: consider the implementation of the
component being tested.

Pro: exploit possible weaknesses

Con: may miss "impossible" bugs

Gray box testing: somewhere in the middle
7

Agile Testing: Hierarchical, Diverse (80/20)
Write three kinds of tests, bottom up:

1. Task level: Unit tests for critical units (black-box and/or white-box)
2. Story/Iteration-level: BDD scenario tests (in unit or BDD tester)
Automating all could be expensive; some by hand

3. Iteration/Milestone-level: End-to-end Scenario tests
(“run” by hand - already done, from product design)
Additionally consider Personas, platforms/configurations, real

people

Diversification beyond the hierarchy:
Asserts from DbC
Logging for hard-to-test code (grey-box)

8

Include time for testing during Planning
Write tests for high-risk units

For each story, have a testing task

Could have two: one for writing tests, one for passing

For a sprint, have a testing Story or “loose” Task
This is a “Developer Story”: As a developer, I want…
End-to-End Scenarios, e.g.

For Milestone, have a testing Iteration or loose Story/
Task
longer End-to-End Scenarios, e.g.

9

Testing early-stage software
You want to test module A

But A depends on module B.

Module B isn't ready yet.

What do?

10

A B

Another situation
Want to test code that depends on the current time

Or the network

Or the disk

Now what?

11

Solution: mocking
New class: MockCalendar
class MockCalendar extends Calendar {	
 long millis;	
 MockCalendar(long millis) {this.millis = millis;}	
 static MockCalendar getInstance()	
 	 	 	 { return new MockCalendar(millis); }	
 long getTimeInMillis() { return millis; }	
 void setTimeInMillis(long ms) { millis = ms; }	
 … // Lots of stubbed methods that we don’t use	
}	

Pass MockCalendar instance into code to be tested.

12

Advanced Testing
Or: how to avoid writing tests manually (sometimes). Credit: CMU S3D (Michael Hilton)

13

Puzzle: Find x such p1(x) returns True

def p1(x):	
 if x * x – 10 == 15:	
 return True	
 return False

14

Puzzle: Find x such p2(x) returns True

def p2(x): 	
 if x > 0 and x < 1000:	
 if ((x - 32) * 5/9 == 100):	
 return True	
 return False

15

Puzzle: Find x such p3(x) returns True

def p3(x):	
 if x > 3 and x < 100:	
 z = x - 2	
 c = 0	
 while z >= 2:	
 if z ** (x - 1) % x == 1:	
 c = c + 1	
 z = z - 1	
 if c == x - 3:	
 return True	
 return False

16

Security and Robustness

17

Fuzz Testing

18

Communications of the ACM (1990)

“

”

Fuzz Testing

19

Input ProgramExecute
w0o19[a%#

A 1990 study found crashes
in:
adb, as, bc, cb, col, diction,
emacs, eqn, ftp, indent, lex,
look, m4, make, nroff, plot,
prolog, ptx, refer!, spell, style,
tsort, uniq, vgrind, vi

/dev/random

Common Fuzzer-Found Bugs in C/C++

Causes: incorrect arg validation, incorrect type
casting, executing untrusted code, etc.

Effects: buffer-overflows, memory leak, division-by-
zero, use-after-free, assertion violation, etc. (“crash”)

Impact: security, reliability, performance,
correctness

But: bugs don't always result in crashes.

int *x = malloc(sizeof(int));
free(x);
printf("%d", *x);

How do you make programs “crash” when a bug is encountered?

Automatic Oracles: Sanitizers

● Address Sanitizer (ASAN) ***
● LeakSanitizer (comes with ASAN)
● Thread Sanitizer (TSAN)
● Undefined-behavior Sanitizer (UBSAN)

https://github.com/google/sanitizers

https://github.com/google/sanitizers

AddressSanitizer

int get_element(int* a, int i) {	
 return a[i];	
}

int get_element(int* a, int i) {	
 if (a == NULL) abort(); 	
 return a[i];	
}

int get_element(int* a, int i) {	
 if (a == NULL) abort(); 	
 region = get_allocation(a);	
 if (in_heap(region)) {	
 low, high = get_bounds(region);	
 if ((a + i) < low || (a +i) > high) {	
 abort();	
 }	
 }	
 return a[i];	
}

int get_element(int* a, int i) {	
 if (a == NULL) abort(); 	
 region = get_allocation(a);	
 if (in_stack(region)) { 	
 if (popped(region)) abort();	
 …	
 }	
 if (in_heap(region)) { ... }	
 return a[i];	
}

Is it null?

Is the access out of bounds?

Is this a reference to a stack-allocated variable after return?

Compile with `clang –fsanitize=address`

AddressSanitizer

int get_element(int* a, int i) {	
 return a[i];	
}

int get_element(int* a, int i) {	
 if (a == NULL) abort(); 	
 return a[i];	
}

Is it null?

Compile with `clang –fsanitize=address`

AddressSanitizer

int get_element(int* a, int i) {	
 return a[i];	
}

int get_element(int* a, int i) {	
 if (a == NULL) abort(); 	
 region = get_allocation(a);	
 if (in_heap(region)) {	
 low, high = get_bounds(region);	
 if ((a + i) < low || (a +i) > high) {	
 abort();	
 }	
 }	
 return a[i];	
}

Is the access out of bounds?

Compile with `clang –fsanitize=address`

AddressSanitizer

int get_element(int* a, int i) {	
 if (a == NULL) abort(); 	
 region = get_allocation(a);	
 if (in_stack(region)) { 	
 if (popped(region)) abort();	
 …	
 }	
 if (in_heap(region)) { ... }	
 return a[i];	
}

Is this a reference to a stack-allocated variable after return?

Compile with `clang –fsanitize=address`

AddressSanitizer

Asan is a memory error detector for C/C++. It finds:
○ Use after free (dangling pointer dereference)
○ Heap buffer overflow
○ Stack buffer overflow
○ Global buffer overflow
○ Use after return
○ Use after scope
○ Initialization order bugs
○ Memory leaks

https://github.com/google/sanitizers/wiki/AddressSanitizer

Slowdown about 2x on SPEC CPU 2006

Strengths and Limitations

● Strengths:
○ Cheap to generate inputs

○ Easy to debug when a failure is identified

● Limitations:
○ Randomly generated inputs don’t make sense most of the time.

■ E.g. Imagine testing a browser and providing some ”input”
HTML randomly: dgsad5135o gsd;gj lsdkg3125j@!
T%#(W+123sd asf j

○ Unlikely to exercise interesting behavior in the web browser

○ Can take a long time to find bugs. Not sure when to stop.

28

Mutation-Based Fuzzing (e.g. Radamsa)

29

InputPick
Input’

Random
Mutation

Program
ExecuteInitial

Input

Input

Input

Input

Seeds <foo></foo>

<woo>?</oo>

Mutation Heuristics
▪ Binary input

▪ Bit flips, byte flips
▪ Change random bytes
▪ Insert random byte chunks
▪ Delete random byte chunks
▪ Set randomly chosen byte chunks to interesting values e.g. INT_MAX, INT_MIN, 0, 1, -1, …

▪ Text input
▪ Insert random symbols relevant to format (e.g. “<“ and “>” for xml)
▪ Insert keywords from a dictionary (e.g. “<project>” for Maven POM.xml)

▪ GUI input
▪ Change targets of clicks
▪ Change type of clicks
▪ Select different buttons
▪ Change text to be entered in forms
▪ … Much harder to design

Coverage-Guided Fuzzing (e.g. AFL)

Save?

Execution feedback

No

Yes

Add
Input’

Coverage
Instrumentation

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
New

branch
coverage?

31

InputPick Input’

Random
Mutation

Program
ExecuteInitial

Input

Input

Input

Input

Seeds <foo></foo>

<woo>?</oo>

Coverage-Guided Fuzzing with AFL

32

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

ClusterFuzz @ Chromium

Property-based testing
Manually writing tests:

- work

- requires creativity

- biased toward your expectations of where bugs
are

+ precise (test relevant use cases)

+ can test basically anything
34

Can we generate lots of tests?
First, write down a property that a function should have, and a range:

@given(s.integers(min_value=-(10 ** 6), max_value=10 ** 6))

def test_factorize_multiplication_property(n):

 """The product of the integers returned by factorize(n) needs to be n."""

 factors = factorize(n)

 product = 1

 for factor in factors:

 product *= factor

 assert product == n, f"factorize({n}) returned {factors}"

35

Then, run Hypothesis, which searches the space…

36

Oops! factorize(5)
returned an empty list of
factors!

Generating tests
Mutate existing "interesting" inputs

e.g. apply transformations to images

Can you relate input transformations to output
transformations?

Rotate input -> expect rotated output

37
Slide credit: adapted from Jonathan Bell (CC BY-SA)

Regression Testing
Goal: know if something changed

Try snapshot tests

First time: record output

Later: compare output to saved output

Useful with GUIs, API testing

38
Slide credit: adapted from Jonathan Bell (CC BY-SA)

Testing user interfaces
Need humans!

Could try A/B tests to see if a real change impacts
users

39
Slide credit: adapted from Jonathan Bell (CC BY-SA)

Avoiding Flaky Tests
Ensure a consistent starting configuration

Ensure consistent cleanup

Test order dependencies

Control asynchronous startup

40

Server Client

Start

Ready

Wait 3 secs for server to start

Make request to server

No response. Test failed!

Slide credit: adapted from Jonathan Bell (CC BY-SA)

