


Learning goals

Be able to explain why code review is beneficial.

Be able to conduct a code review.



Testing has Limitations

Costly to get 100% coverage (all code / behaviors)
080/20 rule!

Not all properties can be checked at runtime
O0Good design®e

OSimple implementatione Understandable code®?
OFollows coding conventions?

OUl looks as infended? Follows Ul guidelinese

OAre the tests adequate (coverage, kind)?



Systematic reading or examination of the code
Focused on what can’t be tested (cost-benefit)

Sometimes done in pairs or groups, often asynchronous

Oat least one is non-author
(authors can't see flaws in their code)

Ofind & work through more complex problems (e.g., design)
Opromote learning and knowledge transfer (not just QAI)
Osuper valuable for “onboarding” new devs

Opair programming is instantaneous code review



Previously: formal code review ("inspection’)

Sit in a meeting, read all code

ave been found effective at finding bugs

Too slow for practical use (not done in most settings)
Now: change-based code review

Every change gets reviewed by someone

Various policies: who can review?e



Motivations and Benefits (Bacchelli et al.)

Ranked Motivations From Developers .
Top [ Second [ Third [ Comments in each Category

| ] Code Improvement
| _ Understanding

|
|
|
Alternative Solutions | | ] Social munication
|
|
|

Finding defects

Code Improvement

Knowledge Transfer

Defects

Team Awareness

External Impact
Improving Dev Process

Share Code Ownership | [ [ [N Testing
Avoid Build Breaks | [ [ [N Review Tool
Track Rationale B Knowledge Transfer

Team Assessment D:- Misc

T T T T T T
0 200 400 600 0% 10% 20% 30%
Responses Percentage of Comments

Benefits of code review

Fig. 3. Developers’ motivations for code review. ) i
(according to analysis of 200

Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and challenges of modern code review. COd e Thl’e(] dS)
In Proceedings of the 2013 International Conference on Software Engineering (ICSE '13). IEEE Press, 712-721.



Code Review at Google

Caitlin Sa
ftwa

Each directory is owned by certain people

AN owner must review and d

oprove changes

"'Readabilility”: ensure consisten

style

Developers can be certitied for individual languages

Every change must be written or reviewed by
someone with "readabillity” certification in the

appropriate language

dowski, Emma Séderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern code review: a
ngineering: Software Engineering in Practice (ICSE-SEIP '18). https://doi.org/10.1145/3183519.3183525

case study at google. In Proceedings of the 40th International Conference on



Google Process

1. Create a change

2. Authors preview results of static analyzers

3. Reviewers write comments: unresolved comments
Mmust be addressed

4. Addressing feedback: author changes code or
replies to comments

5. Approving: reviewers mark "LGTM"



Productivitye

How many commits do you think the median
Google developer makes each week®e

A.

B. 2-3

C.4-7

D. 8-10
E. > 10



Median developer authors about 3 changes a week

80 percent of authors make fewer than 7 changes o
week

Median is 4 reviewers/developer

380 percent of reviewers review fewer than 10
changes a week.

Median time: < 1 hour for small changes, about 5
hours for very large changes. All changes: 4 hours.



More Google stafs

> 35% of changes only modify one file
90% modify < 10 files

10% modify one line of code

Median number of lines: 24



Code review productivity

Recommendation: <= 200 LOC/hour

C. F. Kemerer and M. C. Paulk, "The Impact of
Design and Code Reviews on Software Quality: An
Empirical Study Based on PSP Data,"” in |[EEE
Transactions on Software Engineering, vol. 35, no. 4,
op. 534-550, July-Aug. 2009, doi: 10.1109/
TSE.2009.27.

You'll likely find you tend to go faster.



Tone

The code is the feam's code, not your code

Use "we"' language, not "you" language
Avold blame

'vyou have a bug here" -> "this code might be
buggy’

"What if..."



Review breakdowns (what not to do)

Power (use reviews to iInduce unrelated behavior)
Subject: is this the right place to do designe

Context: why are we doing this?



Newbies write more comments

Newbies ask

Comments vs. tenure at Google
|

more *E ’ | — Comments per change

. qé — - Comments per 100 LoC |
quesfions : - -
But questions s N Tc---—-._
are =
considered %‘D : T —

: ; ; ; ;

unhelpful 0! : 2 3 : 5

Tenure at Google (years)

Figure 2: Reviewer comments vs. author’s tenure at Google



Files vs. time

700

Files seen vs. tenure at Google

|

] ] ] I

600 H - -

500

Median number of files edited
Median number of files reviewed
Median number of files edited or reviewed

400

300

200

100

Tenure at Google (months)



What comments are most usefule

ldentification of functional issues (though these are
relatively rare)

Validation issues, corner cases

For new developers: APl suggestions, design ideas,
coding conventions

Somewhat useful: nit-picking (idenfifier naming,
comments); refactoring ideas

Not useful: guestions, future tasks



Systematic Review: How

Use checklists to remind reviewers what to look for
OE.g., expanded list of properties from slide #1

Specific techniques for specific issues

ODesign is reviewed by working through likely change(s)
(Is The code OCP for likely changes?)

Use tools in GitHub or IDE

OList of changed files

OTextual diff between old and new files (linked to files)
OlLine-level code commenting support

Owork-flow support for choosing/assigning reviewers
Oproftecting main branch



GitHub Issue/Review Workflow Screenshot

Fixed issue 147.

Integral values (byte, short, integer, long, BigInteger) are now comparable to each other.
Floating point values (float, double, BigDecimal) are now comparable to each other.

P master Qgson-parent-2.8.2 ... gson-2.4

inder123 committed on Sep 23, 2009

Showing 2 changed files with 134 additions and 1 deletion.
gson/src/main/java/com/google/gson/JsonPrimitive. java

gson/src/test/java/com/google/gson/JsonPrimitiveTest.java

44 WEEW  gson/src/main/java/com/google/gson/JsonPrimitive.java

r

A i i . . . R . .
22 0@ -344,7 +344,19 @@ private static boolean isPrimitiveOrString(Object target) {

@Override
public int hashCode() {

- return (value == null) ? 31 : value.hashCode();

Browse fil

1 parent 50eb582 commit fdcd3945c53c4alc921ea8097cbecbbf154f:

Unified ¢
+43 -1 |l

+91 -0 Wi

View

@Override

public int hashCode() {

+ if (value == null) {

+ return 31;

+ )

+ // Using recommended hashing algorithm from Effective Java for longs and
doubles

+ if (isIntegral(this)) {

+

long value = getAsNumber().longValue();



Which of the following is NOT a primary objective of a code

reviewe

A. Ensuring code adheres to style guidelines
B. ldenftifying and fixing all performance bottlenecks
INn the code

C. Catching potential bugs or logical errors

D. Sharing knowledge and promoting best practices



A dilemma (credit: ChatGPT) ﬁ’ﬁ

In a code review, you notice that the code follows the team'’s style guide,
passes all tests, and implements the feature as requested. However, you
also see a complex method with mulfiple nested loops and conditional
statements. Which of the following is the most effective response@

A. Approve the code, as it meets the style guidelines and functional
requirements.

B. Suggest breaking down the method into smaller, more focused
functions to improve readability and maintainabllity.

C. Ignore the complex method if there is no explicit performance issue,
focusing only on bugs and functionality.

D. Rewrite the method yourself in a simpler way and provide the new
code for the author to copy.



A Checklist for Your Project

1. Good design? 4. Ul looks as infended, fits guidelines
Isomorphic to requirements

. . 5. Code look correcte
Sound like the requirements .
SRP Omitted cases

Open-closed principle (OCP) for likely (€.g., boundary/edge cases)
changes Off-by-one errors

(e.g., “<" instead of "<=")
2. Straightforward implementation?

Understandable code 6. Are the fests adequate (coverage)e
Good choice of data structures Unif, Story tests

3. Follows coding conventions? « Not strictly ordered by importance
formatting * |f fail at a step, can skip less impf.
(indents, spacing, line breaks) steps (low cost/benefit to continue)
naming conventions * E.g., Hard to debug complex code

(sound like behavior)

22



Review this new code™* (no diff)
pu

OooNOTUVTES WDN R

12 t.

15 }

blic static boolean leap(int y) {
String t = String.valueOf(y);
if (t.charAt(2) == '1' || t.charAt(2) == '3' || t.charAt(2)
5 || t.charAt(2) == '7' || t.charAt(2) == '9") {
if (t.charAt(3)=="2"'||t.charAt(3)=='6") return true;
else
return false;
telseq
if (t.charAt(2) == '0' && t.charAt(3) == '0") {
return false;
}

if (t.charAt(3)=='0"'||t.charAt(3)=="4"]|]
charAt(3)=="8")return true;
}

return false;

*http://web.mit.edu/6.005/www/fal5/classes/04-code-review/



Feedback for your teammatee

variable naming — unclear
hard to read — formatting/indentation

call same functions multiple times with same numbers
O name temp vars, extract functions (make code sound like what it's doing)

uses strings; should use integer calculations
O maybe could use shift...really modulus

assumes 4 digit number...future dates, historical dates
O we don't know the context of use

use of “frue” and “false” rather than returning boolean

51is not a character

24



Worst probleme Unnecessarily complex.

GO gle how to calculate leap year Q

All Videos News Maps Images More Settings Tools

About 8,500,000 results (0.66 seconds)

\

In the Gregorian calendar three criteria must be z i /5000
taken into account to identify leap years: P w —_—
- f agDfs Y2000
1. The year can be evenly divided by 4; =100/2012 | = (200
2. If the year can be evenly divided by 100, it is NOT N “100/2000
a leap year, unless; e -
3. The year is also evenly divisible by 400. Then it is -
a leap year.
Feb 29, 2016

Leap Year Nearly Every four years - TimeAndDate.com
https://www.timeanddate.com/date/leapyear.html

25




Revised code responding to code review

// https://www.timeanddate.com/date/leapyear.html
public static boolean islLeapYear(int year) {
return year % 4 == 0 &&

(year % 100 !== 0 || year % 400 == 0);

* Found a simpler approach

* Method name and parameter
sound like the requirements

« Comment citing approach

* Formaftted for readabillity



Conclusion

Benefits of code review:

Share knowledge

Improve structure and readabillity
Technigues for code review:

Use a checklist

Use a positive tone and "we" language



