
	1



Lecture 2: Intro To Process 
Milestones, Estimation, Planning

CSE 210, Winter 2024 
Slides adapted from CMU 17-313 (credit to Michael Hilton and others)

2



Learning Goals

• Today:	
• Recognize	the	importance	of	process	
• Understand	the	difficulty	of	measuring	progress	
• Identify	why	software	development	has	project	characteristics	
• Use	milestones	for	planning	and	progress	measurement	

• Friday:	
• Understand	backlogs	and	user	stories

3



Software Process
“The	set	of	activities	and	associated	results	that	produce	a	software	product”

4

Sommerville,	SE,	ed.	8



5



How to develop software?

1. Discuss	the	software	that	needs	to	be	written	
2. Write	some	code	
3. Test	the	code	to	identify	the	defects	
4. Debug	to	find	causes	of	defects	
5. Fix	the	defects	
6. If	not	done,	return	to	step	1

6



7

Percent	
of		
Effort

TimeProject	
beginning

Project	
end

100%

0%

Productive	Development	
(coding,	testing,	making	progress	towards	goals)



8

Percent	
of		
Effort

TimeProject	
beginning

Project	
end

100%

0%

Productive	Development	
(coding,	testing,	making	progress	towards	goals)

Addressing	Inefficiencies



Your manager asks you to follow a process
• Writing	down	all	requirements	
• Require	approval	for	all	changes	to	requirements	
• Use	version	control	for	all	changes	
• Track	all	reported	bugs	
• Review	requirements	and	code	
• Break	down	development	into	smaller	tasks	and	schedule	and	monitor	them	
• Planning	and	conducting	quality	assurance		
• Have	daily	status	meetings	
• Use	Docker	containers	to	push	code	between	developers	and	operation

9



10

Percent	
of		
Effort

TimeProject	
beginning

Project	
end

100%

0%

Productive	Development	
(coding,	testing,	making	progress	towards	goals)

Addressing	Inefficiencies

Process:	Cost	and	Time	estimates,	Writing	
Requirements,	Design,		

Change	Management,	Quality	Assurance	Plan,		
Development	and	Integration	Plan



11

Percent	
of		
Effort

TimeProject	
beginning

Project	
end

100%

0%
Process

Productive	Development	
(coding,	testing,	making	progress	towards	goals)

Fighting	Fires	/	Addressing	Inefficiencies



Example process issues
• Change	Control:	Mid-project	informal	agreement	to	changes	suggested	by	
customer	or	manager.	Project	scope	expands	25-50%	
• Quality	Assurance:	Late	detection	of	requirements	and	design	issues.	Test-
debug-reimplement	cycle	limits	development	of	new	features.	Release	with	
known	defects.	
• Defect	Tracking:	Bug	reports	collected	informally,	forgotten	
• System	Integration:	Integration	of	independently	developed	components	at	
the	very	end	of	the	project.	Interfaces	out	of	sync.	
• Source	Code	Control:	Accidentally	overwritten	changes,	lost	work.	
• Scheduling:	When	project	is	behind,	developers	are	asked	weekly	for	new	
estimates.

12



13

Percent	
of		
Effort

TimeProject	
beginning

Project	
end

100%

0% Process

Hypothesis:	Process	
increases	flexibility	and	
efficiency	
	
Ideal	Curve:	Upfront	
investment	for	later	
greater	returns	

Productive	Development	
(coding,	testing,	making	progress	towards	goals)

Fighting	Fires	/	Addressing	Inefficiencies



14



Planning

15



16

Time estimation

https://xkcd.com/612/



Activity: Estimate Time

Task	A:	Simple	web	version	of	the	
Monopoly	board	game	with	San	Diego	
street	names	

Team:	just	you	

Task	B:	Bank	smartphone	app		
Team:	you	with	team	of	4	developers,	
one	experienced	with	iPhone	apps,	one	
with	background	in	security	

*	Estimate	in	8h	days	(20	work	days	in	
a	month,	220	per	year)

My	Task	A	estimate:	___	
My	Task	B	estimate:	___	

Other	Task	A	estimate:	__	
Other	Task	B	estimate:	__	

Other	Task	A	estimate:	__	
Other	Task	B	estimate:	__

17



Revise Time Estimate

• Do	you	have	comparable	experience	to	base	an	estimate	off	of?		
• How	much	design	do	you	need	for	each	task?		
• Break	down	the	task	into	~5	smaller	tasks	and	estimate	them.		
• Revise	your	overall	estimate	if	necessary

18



19

π



Measuring Progress?

• “I’m	almost	done	with	the	app.	The	frontend	is	almost	fully	
implemented.	The	backend	is	fully	finished	except	for	the	one	stupid	
bug	that	keeps	crashing	the	server.	I	only	need	to	find	the	one	stupid	
bug,	but	that	can	probably	be	done	in	an	afternoon.	We	should	be	
ready	to	release	next	week.”

20



Measuring Progress?

• Developer	judgment:	x%	done	
• Lines	of	code?	
• Functionality?	
• Quality?

21



22



Milestones and deliverables make progress observable

Milestone:	clear	end	point	of	a	(sub)tasks	
• For	project	manager	
• Reports,	prototypes,	completed	subprojects	
• "80%	done"	not	a	suitable	mile	stone	

Deliverable:	Result	for	customer	
• Similar	to	milestone,	but	for	customers	
• Reports,	prototypes,	completed	subsystems

23



Waterfall model was the original software process

24

Waterfall	diagram	CC-BY	3.0		Paulsmith99	at	en.wikipedia

https://en.wikipedia.org/wiki/User:Paulsmith99
https://en.wikipedia.org/


… akin to processes pioneered in mass manufacturing 
(e.g., by Ford)

25



Lean production adapts to variable demand

Toyota	Production	System	(TPS)	
Build	only	what	is	needed,	only	when	it	is	needed.		
Use	the	“pull”	system	to	avoid	overproduction.	(Kanban)		
Stop	to	fix	problems,	to	get	quality	right	from	the	start	(Jidoka)	
Workers	are	multi-skilled	and	understand	the	whole	process;	take	ownership	

Lots	of	software	buzzwords	invented	recently	build	on	these	ideas	
Just-in-time,	DevOps,	Shift-Left

26

Taiichi	Ohno

See	also:	“The	machine	that	changed	the	world”	by	James	P	Womack	et	al.	The	Free	Press,	2007.	



27

US	vehicle	sales	market	share;	1961—2016	(source:	knoema.com)



Agile

28



Agile Overview

• Keep	a	prioritized	list	of	user	stories	in	a	backlog	
• The	product	owner	sets	priorities	of	backlog	items	
• Divide	work	into	sprints	(often,	two	weeks	long)	
• Conceptually:	at	end	of	each	sprint,	you	could	ship	
• The	scrum	master	keeps	the	process	on	track	
• Removes	barriers	to	success

29



Sprint Structure

• Start	with	a	planning	meeting	
• First,	estimate	user	stories	
• Then,	commit	to	user	stories	individually	

• Every	day:	standup	meeting	
• What	did	I	do	yesterday?	
• What	will	I	do	today?	
• Am	I	stuck?	

• Then:	sprint	review	and	sprint	retrospective

30



Sprint review

• For	each	user	story:	demo!	
• If	acceptance	criteria	achieved,	great.	
• Otherwise,	user	story	goes	back	on	the	backlog.

31



Sprint retrospective

• Discuss	how	the	sprint	went	
• Refine	interactions,	processes,	tools	
• Identify	and	solve	problems	
• Decide	on	changes	to	improve	effectiveness

32


