Slide credit for this deck: both William Griswold (UCSD) and Michael Hilton (CMU)

Program testing can be used to show the presence of bugs,
but never to show their absence! -- Edsger Dijkstra

WE ADDED A NEW
PERFORMANCE TEST,
BUT LEARNED THAT THE
TEST ITSELF IS FLAWED.

NOW OUR PRODUCT
FAILS OUR OWN
TESTS AND OUR
CUSTOMERS ARE

ASKING TO SEE THE
TEST RESULTS.

DO I HAVE I DIDN'T
PERMISSION EVEN
TO FAKE THE kNOW
TEST DATA? DATA

) CAN BE

Dilbert.com DilbertCartoonist@gmail.com
2110 ©2000 Scott Adams, Inc./Dist. by UFS, Inc.

We expect you to use continuous integration in your
projects

Writing tests can help hone specifications
See literature on test-driven development

TDD may improve quality, but may cost time
(studies conflict)

F. Shull, G. Melnik, B. Turhan, L. Layman, M. Diep and H. Erdogmus, "What Do We Know about Test-Driven Development?," in IEEE Software, vol. 27, no. 6, pp. 16-19, Nov.-Dec. 2010, doi: 10.1109/MS.2010.152.

What makes a good test suitee

You tell me.

Defining correct behavior

Example-based: “For a given input, some assertions should be frue”

Properties: “Output should should satisty some property for all inputs
INn some class”

‘It doesn’t crash’

Invariance: “Changing the input in some way should maintain the
same output”

Regression: "It provides the same output as it used to”

Differential: “Two systems implementing the same spec should
provide the same output”

Human oracle: “For @ gBNen user, they should be safisfied”
Slide credit: adapted from Jonathan Bell (CC BY- SA)

) Nc?T only are tests L_Jsed to
The Many Purposes of Testing [iireiidusused

. testing (later in this
Find bugs lecture).

Hard to prove of the absence of bugs (Dijkstra)

Prevent bugs from sneaking in during enhancement
(Regression Testing)

Loose synchronization among developers/teams can result in
Incorrect use or enhancement of existing code

Give high confidence in the intfegrity of your product

Explore class/method design (Test-First/Test-Driven
Development and/or DbC)

Specification of expected behavior

Key vocabulary

Unit testing is a form of software testing by which
isolated source code is fested to validate expected
behavior. (Kolawal)

Integration testing tests the behavior of large
software components.

The THREE BIG IDEAS of Software Testing
Coverage: Seek to execute all possibilities.

(but does running a line mean you've "covered" it¢)
Test Equivalence Classes:
Tests should all cover different things.

That's still foo many, so...

Bottom-Up Testing: When testing if something works, its parts
should already be tested. We test just the current level,
reducing the explosion of combinations.

Bottom-Up Testing and the Hierarchical Structure of

Agile Planning and Delivery

Milestone 1 €

- mm -
e
€

For example, Iteration testing
assumes that the individual
Stories/Features work, and tests
how the Stories glue together.

User, System Testing

(perf, robustness, user experience)
(i.e., End-to-End Scenarios + Personas)

Acceptance Testing
(customer demo, End-to-End Scenarios)

Story Testing (features)
(acceptance criteria)

Unit Testing (methods)
(black/gray/white box)

Each level of testing assumes all the lower levels of
tests have passed. Only test for the “current-level” risk.

Black box vs. white box festing

Black box testing: do not look inside the component being
tested.

Pro: not biased by implementation details
Con: can't leverage opportunities

White box testing: consider the implementation of the
component being tested.

Pro: exploit possible weaknesses
Con: may miss "impossible” bugs

Gray box testing: somewhere in the middle

Agile Testing: Hierarchical, Diverse (80/20)

Write three kinds of tests, boffom up:

1. Task level: Unit tests for critical units (black-box and/or white-
LoxX)

2. Story/lteration-level
O Automating all could be expensive; some by hand
3. lteration/Milestone-level: End-to-end Scenario tests

O Additionally consider Personas, platforms/configurations, real
people

Diversitication beyond the hierarchy:
Asserts from design by contract
Logging for hard-to-test code (grey-box)

Include tfime for testing during Planning

Write tests for high-risk unifs

For each story, have a testing task
Could have two: one for writing tests, one for passing

For a sprint, have a ftesting Story or “loose”™ Task
This is a “Developer Story’: As a developer, | want...
End-to-End Scenarios, e.g.

For Milestone, have a testing Iteration or loose Story/
Task

longer End-to-End Scenarios, e.g.

Testing early-stage software

You want to test module A
But A depends on module B.
Module B isn't ready yet.
What do?

Another sitfuation

Want to test code that depends on the current time
Or the network
Or the disk

Now whate

Solution: mocking

New class: MockCalendar
class MockCalendar extends Calendar {

¥

long millis;
MockCalendar(long millis) {this.millis = millis;}
static MockCalendar getInstance()

{ return new MockCalendar(millis); }
long getTimeInMillis() { return millis; }
void setTimeInMillis(long ms) { millis = ms; }
.. // Lots of stubbed methods that we don’t use

Pass MockCalendar instance into code to be tested.

Running Tests

Tests can be configuration-dependent

"But it works on my machine!”
It's easy to forget to run tests
Make a change
Three tests fai
Your change's faulie

Solution: run all tests on server on every push

WebClicker (code: MWOTNF)

A. White box testing generally finds more bugs
than black box testing.

B. Tests should be done at every level of the
software, ranging from low-level unit tests 1o
user tesfs.

C. Once testing iIs complete, the team can be
assured no bugs are left.

D. If a test suite executes all lines of code (100%
coverage), then the suite is exhaustive.

i

Advanced Testing

Or: how to avoid writing tests manually (sometimes). Credit: CMU S3D (Michael Hilton)

Context

Previous slides describe commonly-used tfechnigues

Use aft least those techniques in your project

But surely there is research on how to do testing
better!

Puzzle: Find x such p1(x) returns True

def pl(x):
if x * x - 10 == 15:
return True
return False

19

Puzzle: Find x such p2(x) returns True

def p2(x):
if x > @ and x < 1000:
if ((x - 32) * 5/9 == 100):
return True
return False

20

Puzzle: Find x such p3(x) returns True

def p3(x):
if x > 3 and x < 100:
Z =X - 2
cC =0

while z >= 2:
if z ** (x - 1) % x ==
c=c+1
z =2z -1
if ¢ == x - 3:
return True
return False

21

Fuzz Testing

Security and Robustness

Barton P. Miller, Lars Fredriksen and Bryan So

Study of the
Reliability of

m.w
Ll ol ber 1990/ Vol.33, No.12 33

COMMUNICATIONS OF THE ACM/ December

Communications of the ACM (1990)

14

On a
dark and stormy night one of the
authors was logged on to his work-
station on a dial-up line from home
and the rain had affected the
phone lines; there were frequent
spurious characters on the line.
The author had to race to see 1if he

ould type a sensible sequence of
haracters betore the noise scram-
bled the command. This line noise
was not surprising; but we were
surprised that these spurtous char-
acters were causing programs to

crash.

29

Fuzz Testing

[/dev/random

J

w0019[a%#

Execute
| g

> Program

24

A 1990 study found crashes
in:

adb, as, bc, cb, col, diction,
emacs, eqn, ftp, indent, lex,
look, m4, make, nroff, plot,
prolog, ptx, refer!, spell, style,
tsort, uniq, vgrind, vi

Common Fuzzer-Found Bugs in C/C++

Causes: incorrect arg validation, incorrect type
casting, executing untrusted code, etc.

Effects: buffer-overflows, memory leak, division-by-

zero, use-after-free, assertion violation, etc. (“crash”)

Impact: security, reliability, performance,

correctness

But: bugs don't always result in crashes.

int *x = malloc(sizeof(int));
free(x);
printf("sd", *x);

How do you make programs “crash” when a bug is encountered?

Automatic Oracles: Sanitizers

e Address Sanitizer (ASAN) ***

e LeakSanitizer (comes with ASAN)

e Thread Sanitizer (TSAN)

e Undefined-behavior Sanitizer (UBSAN)

https://github.com/google/sanitizers

https://github.com/google/sanitizers

AddressSanitizer Compile with “clang —fsanitize=address"

int get_element(int* a, int i) {
return a[i];

¥

AddressSanitizer Compile with “clang —fsanitize=address"

int get_element(int* a, int i) {
return a[i];
}

Is it null?

int get_element(int* a, int 1) {
if (a == NULL) abort();
return a[i];

AddressSanitizer Compile with “clang —fsanitize=address"

int get_element(int* a, int i) {
return a[i];

¥

int get element(int* a, int i) {
if (a == NULL) abort();
region = get_allocation(a);
if (in_heap(region)) {
low, high = get_bounds(region);
if ((a + i) < low || (a +i) > high) {
abort();
}
}

return a[i];

Is the access out of bounds?

¥

AddressSanitizer Compile with “clang —fsanitize=address"

Is this a reference to a stack-allocated variable after return?

int get element(int* a, int i) {
if (a == NULL) abort();
region = get _allocation(a);
if (in_stack(region)) {
if (popped(region)) abort();

} .
if (in_heap(region)) { ... }
return af[i];

AddressSanitizer

https://github.com/google/sanitizers/wiki/AddressSanitizer

Asan is a memory error detector for C/C++. It finds:

O

O

O

Use after free (dangling pointer dereference)
Heap buffer overflow
Stack buffer overflow

Global buffer overflow
Use after return Slowdown about 2x on SPEC CPU 2006

average

56 e as i71.0mnetpp 433 auncbmk 4« ramd
400.per benc 464 h264 ef. 473, 447 deall

Use after scope
Initialization order bugs
Memory leaks

Strengths and Limitations

Strengths:
Cheap to generate inputs
Easy to debug when a failure is identified

Limitations:
Randomly generated inputs don’t make sense most of the time.

E.g. Imagine testing a browser and providing some "input”
HTML randomly: dgsad51350 gsd;gj Isdkg3125j@!
T%#(W+123sd asf j

Unlikely to exercise interesting behavior in the web browser
Can take a long time to find bugs. Not sure when to stop.

33

Sanitizers... M

A.Can be relied on to find most bugs that pertain to
undefined behavior.

B.Only work when test cases execute dangerous
codepaths.

C.Impose only trivial runtime overhead, so they can be
used in production.

D.Intervene at run time to avoid bad behavior.

E.Remove sensitive data, such as passwords, from
outputs.

Mutation-Based Fuzzing (e.g. Radamsa)

<foo></foo>

Random
Mutation <w00>?</00>

Pick I Execute
» nput -
» In put’ % Program

Initial

>

35

Mutation Heuristics

Binary input
= Bit flips, byte flips
= Change random bytes
= Insert random byte chunks
= Delete random byte chunks
= Set randomly chosen byte chunks to interesting values e.g. INT_MAX, INT_MIN, O, 1, -1, ...

Text input

= Insert random symbols relevant to format (e.g. “<” and “>" for xml)
= Insert keywords from a dictionary (e.g. “<project>" for Maven POM.xml)

GUI input
= Change targets of clicks

Change type of clicks
Select different buttons
Change text to be entered in forms

... Much harder to design

Coverage-Guided Fuzzing (e.g. AFL)

Initial
>

Add
Input’

<foo></foo>

Random
Mutation <w00>?</00>

Execution feedback

coverage]

New

branch
coverage?

37

: Execute

2

Coverage
Instrumentation

%

Coverage-Guided Fuzzing with AFL

November 07, 2014

Pulling JPEGs out of thin air

This is an interesting demonstration of the capabilities of afl; I was actually pretty
’_1‘—'1'"—1"—"_—"'—‘|'_1"_]T'_H—H—U_IT'—T’—I"__”"—’F_—'F—"F_"W:']

: : | :
surprised that it worked! aEEEERER. S8 URE=eEuE B

EEEEEEEEEEEEE R EEE R
SOOI ORI
[—‘“’W’—‘W'—'hx—*r—'r—mﬂﬁ'—l],n—w—w—mﬁhﬁv—l

$ mkdir in dir
$ echo 'hello' >in dir/hello
$./afl-fuzz -i in_dir -o out_dir ./jpeg-9&

r-ﬂ—ﬁ—wr—qr—'v—vr—rrﬂr—u—ﬂv—w_lr—l’_‘“‘?r‘“r‘—'r“”r“‘r_‘ﬁ

o J e e i J e - - - -
https://Icamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

38

ClusterFuzz @ Chromium

G bUgS chromium ~ All issues

D ~

1133812

1133763

1133701

1133254

1133124

1133024

1132958

1132907

Stars v

2

ReleaseBlock ~

~ Q_ label:ClusterFuzz -status:Duplicate

Component ~

1- 100 of 25423 Next » List

Status -

BIink>GetUserMedi Untriaged

Blink>=JavaScript

Internals>Network

Ul>Accessibility,
Blink>Accessibility

Blink>=JavaScript>GC

Untriaged

Untriaged

Untriaged

Untriaged

Started

Assigned

Assigned

Owner ~

dmcardle@ch

sin...@chromi

dinfuehr@chr

Property-based testing

Manually writing tesfs:

- WOrk
- requires creativity

- biased toward your expectations of where bugs
are

+ precise (test relevant use cases)

+ can test basically anything

Can we generate lots of testse

First, write down a property that a function should have, and a range:

@given(s.integers(min_value=-(10 x* 6), max_value=10 *xx 6))
def test_factorize_multiplication_property(n):
"""The product of the integers returned by factorize(n) needs to be n."""
factors = factorize(n)
product =1
for factor in factors:

product *= factor

assert product == n, f"factorize({n}) returned {factors}"

Then, run Hypothesis, which searches the space...

41

================================== test session starts ==================================
platform linux -- Python 3.8.4, pytest-6.0.1, py-1.9.0, pluggy-0.13.1

rootdir: /home/moose/GitHub/MartinThoma/algorithms/medium/property-based-testing

plugins: hypothesis-5.23.8

collected 9 items

test factorize parametrize.py
test factorize property.py

@given(s.integers(min_value=-(10 ** 6), max_value=10 ** 6))
> def test factorize multiplication_property(n):

@given(s.integers(min_value=-(10 ** 6), max_value=10 ** 6))

def test factorize multiplication_property(n):
"""The product of the integers returned by factorize(n) needs to be n.
factors = factorize(n)

product = 1
for factor in factors: .
product *= factor Qops! fOCTOI’IZG(5)
> assert product == n, f"factorize({n}) returned {factors}" returned an emp’ry list of
factors!
:16: AssertionError

——————————————————————————————————————— Hypothesils -------cmmmmm i e o
Falsifying example: test factorize multiplication_property(

e Short teSt Summary info e
FAILED test factorize property.py::test factorize multiplication_property - AssertionEr...

9

Generating tests

Mutate existing "inferesting” iInputs

e.g. apply tfransformations to iImages

Can you relate input transformations to output
transformationse

Rotate input -> expect rotated output

Slide credit: adapted from Jonathan Bell (CC BY-SA)

Regression Testing

Goal: know if something changed

Try snapshot tests
First time: record output

Later: compare output to saved output
Useful with GUIs, API testing

Slide credit: adapted from Jonathan Bell (CC BY-SA)

Testing user intertaces

Need humans!

Could try A/B tests to see if a real change impacts
users

Slide credit: adapted from Jonathan Bell (CC BY-SA)

Avolding Flaky Tests

Ensure a consistent starting configuration

Ensure consistent cleanup
Test order dependencies

Control asynchronous starfup .., Cliont

Start Wait 3 secs for server to start
Make request to server

No response. Test failed!

Ready

Slide credit: adapted from Jonathan Bell (CC BY-SA)

46

Conclusion

Write tests at every level of abstraction

Use continuous intfegration (ClI) to test every push

Use fancy technigues 1o reduce manual work

