
Writing Great Software

What Makes Software Great?

• User stories aren't enough

• There are lots of ways to write the code.

• How can we say, of all the different implementations, which we want?

Recipes App
• Your recipes app has gone viral.

• Now it has 1M users!

• Does it still work?

• Oops. Only one server.

• Database needs to be sharded across multiple disks

• Want to integrate with a shopping list app: what changes are needed?

Did You Miss Some Requirements?

• You always miss some requirements!

Functional Requirements vs. Quality
Attributes

• Functional requirements: things the system must do

• "As a student, I want to import my favorite recipes so I can experience nostalgia."

• Quality attributes: requirements concerning how the system meets its functional
requirements

• "The system should support at least 1000 recipes."

• "It should be possible to integrate with a shopping list app within a month."

• Should be testable

Quality Attributes
• Express "non-functional requirements"

• Not what the system should do, but how it should do it

• Examples: modifiability, maintainability, performance, robustness

• Good design promotes some quality attributes

• Sometimes at the expense of others

A Key: Abstraction
• Software is composed of abstractions (you already know this)

• This slideshow is a sequence of slides

• Each slide has objects, each of which can draw itself

• Somewhere there's code that asks objects to draw themselves

• But that code doesn't know what the objects are!

Modifiability

• Can create a new kind of object without changing code that draws
slides

• Can change how one object draws without knowing how another
object draws

• Conclusion: separating concerns promotes modifiability

High-Level Design

• This kind of high-level design is called "architecture"

• But it can be hard to appreciate until you've seen big systems

• Today, focus is on lower-level details

• In a few weeks, we'll climb up to the architectural level!

Readability
• What does this do?

#!/usr/local/bin/perl -s
do 'bigint.pl';($_,$n)=@ARGV;s/^.(..)*$/0$&/;($k=unpack('B*',pack('H*',$_)))=~
s/^0*//;$x=0;$z=$n=~s/./$x=&badd(&bmul($x,16),hex$&)/ge;while(read(STDIN,$_,$w
=((2*$d-1+$z)&~1)/2)){$r=1;$_=substr($_."\0"x$w,$c=0,$w);s/.|\n/$c=&badd(&bmul
($c,256),ord$&)/ge;$_=$k;s/./$r=&bmod(&bmul($r,$r),$x),$&?$r=&bmod(&bmul($r,$c
),$x):0,""/ge;($r,$t)=&bdiv($r,256),$_=pack(C,$t).$_ while$w--+1-2*$d;print}

Source: http://www.cypherspace.org/rsa/pureperl.html

Try Again…
#!/usr/local/bin/perl -s
#Above: full path for perl (may need to be changed on local system).
-s switch enables simple switch processing, which sets $d to 1
if "-d" is on the command line (it also removes the switch from ARGV).
if -d is not given $d is undefined (acts like 0)

#Load the standard bigint library. Unlike require, do will not complain if
#the library is not present. The space between do and the quotes is required
#(ha ha) in 4.036.
do 'bigint.pl';
#Set $_ to the key (e or d), and $n to n.
($_,$n)=@ARGV;
#For $_ (the key), if there are an odd number of characters,
#then add a leading zero. This is needed for the pack below.
s/^.(..)*$/0$&/;
#pack hex digits to 8-bit binary, then unpack to ASCII binary, store in $k
#The outer parens are needed for precedence.
($k=unpack('B*',pack('H*',$_)))
#remove any leading zeros from $k
 =~s/^0*//;
#Extract $x (bigint version of $n).
$x=0; Initialize bigint (needed?)
$z= result of search/replace--the number of characters
(hex digits) in $n

It's an RSA Implementation.

• Obviously this was obfuscated. But what makes code easy or hard to
read?

• (you tell me.)

Readability
• What promotes maintainability at a low level?

• Good functional decomposition

• Good identifier names

• Good formatting

• Avoiding repetition

SOLID Principles for Design

• Robert C. Martin proposed five principles of object-oriented design

• Conveniently, these apply to TypeScript as well!

Goals for Today
• SRP: Single Responsibility Principle

• Open-closed principle

• Liskov substitution principle

• Interface segregation principle

• Dependency inversion principle

• Also: DRY: Don't Repeat Yourself

Open-Closed Principle

• Objects should be open for extension but closed for modification

• i.e. enable extending class without modifying the class

Liskov Substitution Principle

• Properties of a class should hold of subclasses

• i.e. anyone expecting a Shape should be OK when receiving a Square

Interface Segregation Principle
• Clients shouldn't have to implement interfaces they don't use

• Clients shouldn't have to depend on methods they don't use

• ShapeInterface includes area()

• But 3D shapes also include volume()

• Don't add volume() to ShapeInterface

• Goal is to avoid tight coupling

• n.b. not the same as dependency injection

• Can be applied too much

Dependency Inversion Principle
High-level modules should not import anything from low-level modules. Both should
depend on abstractions (e.g., interfaces).

Abstractions should not depend on details. Details (concrete implementations) should
depend on abstractions.

Martin, Robert C. (2003). Agile Software Development, Principles, Patterns, and Practices

https://books.google.com/books?id=0HYhAQAAIAAJ

Dependency Inversion (Non)-Example
class OrderService {
 database: MySQLDatabase;

 public create(order: Order): void {
 this.database.create(order)
 }

 public update(order: Order): void {
 this.database.update
 }
}

class MySQLDatabase {
 public create(order: Order) {
 // create and insert to database
 }

 public update(order: Order) {
 // update database
 }
}

Changes in
MySQLDatabase may
propagate to
OrderService 🙁

With Dependency Inversion
interface Database {
 create(order: Order): void;
 update(order: Order): void;
}

class OrderService {
 database: Database;

 public create(order: Order): void {
 this.database.create(order);
 }

 public update(order: Order): void {
 this.database.update(order);
 }
}

class MySQLDatabase implements Database {
 public create(order: Order) {
 // create and insert to database
 }

 public update(order: Order) {
 // update database

Database interface avoids
dependency

For Rest of Today: DRY and SRP

Thing-Ness Simplified:
 the Single Responsibility Principle (SRP)

• A class should be responsible for one thing
(thing, capability, computation, etc.)

• Can phrase as “mind your own business”

• object does its own calculations
• object should not do calculations for another

• Easy to violate this because objects need to be connected to one another
• If you want something done, you just do it (oops)

Oops: Cramming Related Functionality Into a Single Class

SRP Design Has Separate Classes for “Do-Ers”

The four
misplaced
methods

This is called Refactoring.

One big class into four smaller ones =
making a big project act like a small one

New Design Is Better
• For change, you know where to find code

• Changing Mechanic stuff? Look in Mechanic
• In old design, could overlook Automobile, means bug

• Only one locus of change
• Don’t have to think about, or change, Automobile and Mechanic
• Simpler change, fits on screen, less chance of bug
• Can think of your big program as bunch of small ones

• Design matches world, so easier to understand

People Are Complicated

Consider this Java class, which is using good naming conventions to convey the meanings of the methods:

class Person {
 public void rainOn();
 public boolean isWet();
 public String getSpouseName();
 public boolean isLeftHanded();
}

Which methods are SRP?

A. rainOn(), isLeftHanded()

B. isWet(), getSpouseName()

C. isWet(), isLeftHanded()

D. getSpouseName(), isLeftHanded()

D is tempting, but the fact that
we’re getting the name from
the Spouse object is the give-
away: the Spouse should be
asked for its name directly.
(Later we’ll see that the spouse
shouldn’t be stored in the
Person class at all.)

Thing-Ness Simplified:
 Don’t Repeat Yourself (DRY)

• Each “thing” or computational idea should be expressed just
once

• Violations are often the result of:
• cut-and-paste programming
• incomplete class (others have to do calculations for it, which also violates

SRP)

• But also over-specialization of classes (implement object as a class)

Un-Thing-Ness:
Over-Collaborating Classes

Example: iSwoon

Repetition
(violates
DRY)

Example: iSwoon (Continued)
This code violates SRP. Why?

Better phrasings:
A.Date does not “validates-events itself”
B. Changes to Event (like adding new event

type) requires changing Date

Example: iSwoon (Continued)

Responsibility for
Events (violates SRP)

Also note that the only
difference between subclasses
is a constant data value

It’s OK to call Event method, but not
calculating on event data to derive event
property

Repetition
(violates
DRY)

Also note
that only
difference in
subclasses is
a constant

Refactored Date Class

Replaces 3
Event
constructors

Number instead of
class for each date!

Refactored iSwoon Design (Cont’d)

Moved from
Date to get SRP.

“Factory”
Methods
keep Event
details local

String, not class for each
event!

Refactored
Event

Rewind:
 Now We Can See Symptoms in the UML

Date methods
are about Events
violates SRP

These classes sound like objects

Refactored iSwoon Design (Cont’d)

But now date
functionality here!
Why OK?

Which of these is a wrong justification for dateSupported(int)
is OK in Event, but validateEvent(Event) is not OK in Date?

A. The only thing that’s going to use a Date is an Event

B. Because whether an Event is allowed is a property of the
Event itself, not the Date

C. dateSupported is computing on an int, not a Date

D. You wouldn’t have to change any code if you were to
add another valid Event

Design Diagnosis Review
• Three common mistakes in design

• TOO MUCH: Put all X-related functionality in class X (Automobile)
• TOO FRIENDLY: Blending of closely related classes (Date & Event)
• TOO LITTLE: Defining class that has only one object (Date & Event)

• SRP: The Single Responsibility diagnostic
• Do the “____ itself ” test on methods
• A change in one class causes change in another class

• DRY: The Don’t Repeat Yourself diagnostic
• Repetitive code
• A “small” change requires many similar changes across methods or classes

• Constant Classes: Only diff. between classes is constants (same methods)

Design Repair Review
• For SRP-violating functionality

• Create additional classes, move violations there (Automobile)
• Move into existing classes (Date & Event)

• For DRY-violating functionality
• Create new method out of repetitive code, call it

• For repetitive/constant classes
• Merge repetitive, similar classes and encode differences with variables
• static String name = “SeeMovie”;  String name;

Take-Aways From Class Today

• Possible to diagnose and repair a design before or after the coding (may require both)
• SRP: shared responsibility requires two classes to change together
• DRY: duplicated code requires multiple methods/classes to change

• Often, iteration and peer feedback can help you improve your design

• Unfortunately, there are many kinds of design mistakes, and unique repairs for them

