Writing Great Software

VWhat Makes Software Great!?

® Ulsey stories arent enough
£ Ihere are lots of ways to write the code.

* How can we say, of all the different implementations, which we want?

Recipes App

* Your recipes app has gone viral.

« Now 1t has | M users!

» Does it still work!?

f L0Ds. Only one server.

» Database needs to be sharded across multiple disks

* Want to Iintegrate with a shopping list app: what changes are needed!?

Did You Miss Some Requirements!

* YOu always miss some reguirements!

Functional Requirements vs. Quality
Attributes

* Functional requirements: things the system must do
» "As a student, | want to import my favorite recipes so | can experience nostalgia.”

» Qualrty attributes: requirements concerning how the system meets its functional
requirements

» "The system should support at least 1000 recipes.’
* "It should be possible to integrate with a shopping list app within a month.”

« Should be testable

Quality Attributes

» EXxpress "non-functional requirements’
» Not what the system should do, but how 1t should do it

» Examples: modifiability, maintainability, performance, robustness

» Good design promotes some quality attributes

B hetimes at the expense of others

A Key: Abstraction

» Software 1s composed of abstractions (you already know this)

» [his slideshow Is a sequence of slides

» Each slide has objects, each of which can draw itself

» Somewhere there's code that asks objects to draw themselves

» But that code doesn't know what the objects arel

Modifiability

» (an create a new kind of object without changing code that draws
shides

» (Can change how one object draws without knowing how another
object draws

» Conclusion: separating concerns promotes modifiability

High-Level Design

» [his kind of high-level design Is called "archrtecture”
» But It can be hard to appreciate until you've seen big systems
» Joday, focus Is on lower-level details

* |n a few weeks, we'll cimb up to the architectural level

Readabllity

* What does this do!

#!/usr/local/bin/perl -s

do 'bigint.pl';($,$n)=@ARGV;s/".(..)*$/0S&/; (Sk=unpack('B*',pack('H*',S$)))=~
s/”0*//;$x=0;S$z=$n=~s/./$x=&badd (&bmul ($x,16),hex$&)/ge;while(read(STDIN,S ,Sw
=((2*$d-1+$z)&~1)/2)){S$r=1;$ =substr($."\0"x$w,$c=0,5w);s/.|\n/Sc=&badd(&bmul
(Sc,256),0rdS$&)/ge;$ =Sk;s/./$Sr=&bmod(&bmul($Sr,Sr),$x),$&?Sr=&bmod (&bmul(Sr, Sc
), $x):0,""/ge; (Sr,St)=&bdiv($Sr,256),$ =pack(C,S$t).$ whileSw--+1-2*Sd;print}

Source: http://www.cypherspace.org/rsa/pureperl.htmi

Ty Acain.

#!/usr/local/bin/perl -s
#Above: full path for perl (may need to be changed on local system).

-s switch enables simple switch processing, which sets $d to 1
1if "-d" i1s on the command line (it also removes the switch from ARGV).
if -d is not given $d is undefined (acts like 0)

#Load the standard bigint library. Unlike require, do will not complain if
#the library is not present. The space between do and the quotes is required
#(ha ha) in 4.036.

de bigint.pl ;

#Set § to the key (e or d), and $n to n.

(S ,$n)=@ARGV;

#For $ (the key), if there are an odd number of characters,

#then add a leading zero. This is needed for the pack below.

S/ (:.)*S/058&/;

#pack hex digits to 8-bit binary, then unpack to ASCII binary, store in Sk
#The outer parens are needed for precedence.

($k=unpack('B*',pack('H*',$_)))

#remove any leading zeros from Sk

=5/ 0%/ /-
#Extract $x (bigint version of $n).
$x=0; Initialize bigint (needed?)

Sz= result of search/replace--the number of characters

e N

t's an RSA Implementation.

» Obviously this was obfuscated. But what makes code easy or hard to
read!

E 0OU tell me.)

Readapllity

* What promotes maintainability at a low level?

» Good functional decomposition

« (Good identifier names

» Good formatting

» Avoiding repetrtion

SOLID Principles for Design

» Robert C. Martin proposed five principles of object-oriented design

» Conveniently, these apply to lypeScript as welll

Goals for loday

» SRP: Single Responsibility Principle
» Open-closed principle
» Liskov substritution principle

* Interface segregation principle

» Dependency inversion principle

B 50 DRY: Don't Repeat Yourselt

Open-Closed Principle

» Objects should be open for extension but closed for modification

* Le.enable extending class without modifying the class

Liskov Substritution Principle

» Properties of a class should hold of subclasses

* L.e.anyone expecting a Shape should be OK when receiving a Square

Interface Segregation Principle

» Clients shouldn't have to implement interfaces they don't use
» Clients shouldn't have to depend on methods they don't use
. ShapeInterface includes areal()

 But 3D shapes also include vo Lume ()

- Don't add volume() to ShapeInterface

Dependency Inversion Principle

High-level modules should not import anything from low-level modules. Both should
depend on abstractions (e.g., Interfaces).

Abstractions should not depend on details. Details (concrete implementations) should
depend on abstractions.

» Goal Is to avoid tight coupling

* n.b. not the same as dependency injection

» (Can be applied too much

, Robert C. (2003). Agile Software Development, Principles, Patterns, and Practices

https://books.google.com/books?id=0HYhAQAAIAAJ

Dependency Inversion (Non)-Example

class OrderService {
database: MySQLDatabase;

Changes In
public create(order: Order): void {
this.database.create(order) MySQLDatabase may
; Dropagate to
public update(order: Order): void { Orde I‘Se rVice @
this.database.update
¥

I

class MySQLDatabase {
public create(order: Order) A
// create and insert to database

}

public update(order: Order) {
// update database
I3
¥

With Dependency Inversion

interface Database {
create(order: Order): void;
update(order: Order): void;

L

Database Iinterface avoids
dependency

¢ lass OrderService {
database: Database:

public create(order: Order): void {
this.database.createlorder):

}

public update(order: Order): void {
this.database.update(order);

l
¥

class MySQLDatabase implements Database {
public create(order: Order) {
// create and insert to database

}

public update(order: Order) {

PO Rest of loday: DRY and SR

Thing-Ness Simplified:
the Single Responsibility Principle (SRP)

» A class should be responsible for one thing
(thing, capability, computation, etc.)

» Can phrase as “mind your own business™

* Object does Its own calculations

» object should not do calculations for another

» Easy to violate this because objects need to be connected to one another

» I you want something done, you just do It (oops)

Oops: Cramming Related Functionality Into a Single Class

Automobile

’ + start() :voi-

+ stopl) void | . SRP Analysis for _ Automobile
b + thange Tives automobile

Follows Violates ‘

vesponsible For You may have SRP SRP

+ dV‘WC() 3Voi¢ skarﬂng a%i " /——~ to add an "
|+ wash() void T ok —>The _Avbomabile __startls] Hsolf. bue 4o ok,
+ eheekOil() » the atomdle 5 Tho Automobile _ stopls] fgself.

' 27y The _Automobile _changesTives ifself.
+ 36w0|() :m" An automobile is/—’]’m Automobile dvivels] itself.

gQ Tc»: Sg-on “ble —»The _Automobile _ washles] ftself.
or nging

it own fives, > The _futomobile _ checkls] ol jtgelf,
washing itself, The __Automobile getls] oil itself.

or C"\CCkihs nts

own oil.

This one was a little

tricky—we thought 4h
Vov should have {:hough{: Ca\rcfuny while 3 aufp.::g” that

" M € mi h
means. | his is 3 method that \)W{ VC&”)’ the rcsponsibiH‘,y of a
veturns the amount of oil in The driver {o drive the ¢ar.

aubomobile—and that is_ somc{hhng
that the automobile should do

SRP Design Has Separate Classes for “'Do-Ers”

One big class into four smaller ones =
making a big project act like a small one

———

_ futomobile

+ start() void

+ s{p‘?o void
The fOUf' +thange T estbires—FivetH—vo
+dviveD—void

m|5placed > wao‘n(> #vo.lul
b .l AAl.A"/\ |

me«'-hods I CNCURUTIC VOTU |
+ aet0il0) :int |

e —
—— — I

This is called Refactoring.

New Design Is Better

* For change, you know where to find code
(riancing Mechahic stuft! Look in Mechanic

* In old design, could overlook Automobile, means bug

- Only one locus of change

» Don't have to think about, or change, Automobile and Mechanic
pler chianoe, Tits on screen, less chance of bug

» (Can think of your big program as bunch of small ones

* Design matches world, so easier to understand

People Are Complicated

Consider this Java class, which is using good naming conventions to convey the meanings of the methods:

class Person {
public void rainOn();
public boolean isWet();
public String getSpouseName();
public boolean isLeftHanded();

¥
Which methods are SRP?

A, rainOn(), isLeftHanded()
3, isWet(), getSpouseName()
c. isWet(), isLeftHanded()

D. getSpouseName(), isLeftHanded()

D is tempting, but the fact that
we're geftfing the name from
the Spouse object is the give-
away: the Spouse should be

asked for ifs name directly.
(Later we'll see that the spouse
shouldn’t be stored in the
Person class at all.)

Thing-Ness Simplified:

Don’t Re

beat Yourself (DRY)

» Each “thing” or computational idea should be expressed just

once

* Violations are often the result of:

e cut-anc

Daste

Drogramming

* Incomplete class (others have to do calculations for it, which also violates

SRP)

» But also over-specialization of classes (iImplement object as a class)

Un-Thing-Ness:
Over-Collaborating Classes

events

Date —
The Date ¢lass turvently —
.hfndlcs i«hc 'job of seeing | 4 secMO\ﬁC() oid
¥ @ partitular event WOl
IS aPProPria{x fo: 3 ‘.' SOTORestaurahk() .vo‘d There's 3 method
particular date. \ + ordﬂﬂows() :VOld for eath {yyg of
Jboolean event that can be
+ goOnDa’cco ooled added o a date
4 validateEvent(event : Event)boolear |

—

W

Fivs’cDabe/_X

~
4 validateEvent(event : Em"%“

o Evert)
va\ida{:eﬁvehuc“"‘t : :\:2\:3'\

Sccond%__x_

ﬂivdM.
s

validateEvent(event : Byernt)

ke

Remember, eath tlass should be
rcs?onsiblc on‘\/ (:or '\{;scl‘c, and
shouldn't rc‘y on {:h'mgs going on
inside other ¢lasses.

Event

+ _9:15/%7»»:/) : .ffﬂng

]

JA
:] :
/___\S“MWECEVC"{ GoToRestaurantEvent OvderFlowersEvent
— name : String = “SchovieT = name : String = a Mng = o

— d\\

t 9etName() :String \
L Ny

7\ 4

1 _
N

W@ i methods
All of the \ogtt, in these me |
needs +o be wpdated every Lime Yyou

add a new type event.

\//

“GoToRestaurant”

/’_\

+ getName() 8'7’5/, y 7L

\ [

The diffevent Date ¢lasses have to
know what these name s{rings are
to detide what events are allowed
on 3 specific date, but if the name

the event Changcs, the Date
subtlasses have o thange, too.

”

“OvderFlowers”

+ gchame() =Sb-in3

e —

~/documents/110/iSwoon/Original
class Date {

protected static ArrayList<String> allowedEvents;
protected ArrayList<Event> events = new ArrayList<Event>();

public void seeMovie() {
Ev-- 'eEvent();
|
even S.add(event),
else
throw eventNotAllowedOnDateEvent(event,

¥
pu bTwc void goToRestaurant() {

taurantEvent(),

Repetition
throw eventNotAllowedOnDateEvent(event, 1S); (VIO‘OTGS
: DRY)

pubTic void orderF1owers() {
lowersevent();

throw eventNotAllowedOnDateEvent(event,

¥
pubTic boolean goonDate() {

~/documents/110/iSwoon/Original

protected boolean validateEvent(Event event) {
for (String eventName : allowedEvents)

1T (eventName equals(event.getName())) return
return ;

This code violates SRP.

1SS FirstDate extends Date {

protected static ArrayList<String> allowedEvents
new ArrayList<String>(Arrays.asList(:

public FirstDate() {}

155 SecondDate extends Date {

protected static ArrayList<String> allowedEvents
new ArrayList<String>(Arrays.asList(:

));
public SecondDate() {}

¥

class ThirdDate extends Date {

protected static ArrayList<String> allowedEvents =
new ArrayList<String>(Arrays.asList(:

D))

~/documents/110/iSwoon/Original
protected boolean validateEvent(Event event) {
for (String eventName : allowedEvents
1T |(eventName.equals(event.getName())D return .
return : R

It's OK to call Event method, but not
calculating on event data to derive event

, | ropert
class FirstDate extends Date { Property

protected static ArrayList<String> allowedEvents =
new ArrayList<String>(Arrays.asList(: D ;

public FirstDate() {}

Responsibility for

class SecondDate extends Date { EVGHTS (ViO‘OTeS SRP)

protected static ArrayList<String> allowedEven =

)51ew ArrayList<String>(Arrays.asListq cccvovie’, "CotoMovie’, "Ordertlowers
public secondpate() {} Also notfe that the only
difference between subclasses

class Thirdbate extends Date { IS O constant data value

protected static ArrayList<String> allowec

new ArrayList<string>(Arrays.asList ("SeeMovie", "GoToMovie , "OrderFlowers

~/documents/110/iSwoon/Original
class Event {

protected static String name;
public String getName {

return name;
class SeeMovieEvent extends Event {
protected static String name =

public SeeMovieEvent() {}

class GoToRestaurantEvent extends Event {

Repetition
(violates
DRY)

protected static String name =

public GoToRestaurantEvent() {}

class OorderFlowersEvent extends Event { AlsO note

protected static String name = : that Oﬂ‘y
nublic orderFlowersEvent() {} difference In
} subclasses Is

-

A constrant

ored | Jate Iz
INUMber instead of Il —
class for each datel

tected 1nt dateNum;

tected ArrayList<Event> events = new ArrayList<Event>();

yrotected Date(int dateNumber) {
dateNum = dateNumber;

}

public void addEvent(Event event) {
1T (event.dateSupported(dateNum)) Replcces 3

events.add(event);

&Y Event

throw eventNotAl lowedOnDateEvent(event, this);

, . CONSTrUcCtors
public boolean goOnDate() {
¥

~/documents/110/iSwoon RefQC‘I'OI'ed
r! 'ss Event { String, not class for eoch

protected String name; /even’rl

protected int f1rstA11owedDate = Integer.MAX_VALUE;

public Event(int eventsFirstAllowedDate, String eventName) {
firstAllowedDate = EventsF1rstA11owedDate
ELE = eventName

¥

protected boolean dateSupported(int dateNumber) { Moved from

return dateNumber >= firstAllowedDate;

} Date to get SRP.

public static Event makeSeeMovie() { return new Event(.,
public static Event makeGoToRestaurantEvent() {

} return new Event(l,); “Foc’rory”

public static Event makeOrderFlowers() { Methods
} return new Event(_,): keep Event

, detaills local

|

-
3 validateEvent(event : Eszza,

Rewind;

Now We Can See Symptoms in the UML

validateEvent(even

A

: Event/
va\ida{:eﬁvewb(m{" : E{::\%» ‘boolean

N

W methods
All of the logit in these me |
needs 4o be updated every Lime You
add 3 new {:Y?c 0‘(: cVCn{Z-

| 1 9etName() :String \ J

——

I - ot A
P {.‘TE.:C"{JY + M V‘C() 'vo.‘d ;::zl,;:ﬁt:r:l;c}h things 5;'m5 on
CClhs see 0 ' N inside other ¢lasses.
event -
T’"Fo\r : / + SOTORCS'kaUva“‘k() oVO‘d The events Event — J
:5" \ + or dCYF‘ o 'M() :void for O.% 7|+ getName() : String
is a
par . cve
+ 500nDabc() .b;o\eaz Freniboolean| . |
VJIidJ&EVaé event - ¥ C B —
]‘S SeeMovieEvent N /ﬂs&wan{Ev&{ || OrderFlowersEvent
— name : S{ring = “Cee Movie” — name : S'[:riy.s = ~ mame : S ‘bms - —_—
3 4)\ “QoToRestaurant”

“OvderFlowers”

[

The di-m:crcn{: Date tlasses have to
know what these name s{rings are

to detide what events are allowed
on 3 specific date, but if the name
the event thanges, the Date

+ getNameO 37/ /%

+ gchame() =S+xin5

—

|

subclasses have o thange, too.

These classes sound

like objects

~/documents/110/i1Swoon/RefactoredForSRPandDRY
lass Event {

otected String name:
otected int firstAllowedDate = Integer.MAX_VALUE;

public Event(int eventsF1rstA11owedDate String eventName) {
firstAl lowedDate EventsF1rstA11owedDate

name = eventName

olean dateSupported(int dateNumber) { }BUT now date

functionality here!
Why OKZ?

] return dateNumber >= TirstAllowedDate;

}

Which of these Is a wrong justification for dateSupported(int)
IS OK In Event, but validateEvent(Event) is not OK in Date?

A. The only thing that’s going to use a Date is an Event

B. Because whether an Event is allowed is a property of the
Event itself, not the Date

C. dateSupported is computing on an int, not a Date

You wouldn't have to change any code it you were to
@léicl another valiad Event

.U

Design Diagnosis Review

£ lhiree comimon mistakes In design

« TOO MUCH: Put all X-related functionality in class X (Automobile)
 TOO FRIENDLY: Blending of closely related classes (Date & Event)
» TOO LITTLE: Defining class that has only one object (Date & Event)

* SRP: The Single Responsibility diagnostic
o the (tself « test on methods

A change In one class causes change in another class

* DRY: The Don't Repeat Yourself diagnostic
Repetitive code
A “small’ change requires many similar changes across methods or classes

» Constant Classes: Only diff. between classes is constants (same methods)

Design Repair Review

» For SRP-violating functionalrty

- (Create additional classes, move violations there (Automobile)

e e = Into exdsting classes (Date & Event)

* For DRY-violating functionality

E e Imethod out of repetitive code, call It

* For repetitive/constant classes

» Merge repetitive, similar classes and encode differences with variables

£ 1lje String name = SeeMovie’; =2 String name;

[ake-Aways From Class loday

Possible to diagnose and repair a design before or after the coding (may require both)
» SRP: shared responsibility requires two classes to change together
* DRY: duplicated code requires multiple methods/classes to change

» Often, iteration and peer feedback can help you improve your design

Unfortunately, there are many kinds of design mistakes, and unique repairs for them

