
Model-View-Controller

Separation of Concerns

• To make a change: must first figure out where to make the change

• What do you need to know?

• Understand the whole system? Impossible!

• Approach: divide the system into pieces

Responsibilities
• A responsibility is an action, knowledge to be maintained, or a decision to be

carried out by a software system or an element of that system. [Bachmann, Bass,
Nord]

• Responsibilities are assigned to modules

• But what is the cost of modifying a responsibility?

• Responsibilities can be coupled: a modification to one can result in a
modification to the other

Diffuse Responsibilities
• It might be hard to see in a program this small

• But why are calculations for the two sections of the progress bar in the event
handler?

• Also redundant with initialization

button.on('click', () => {
 progress.advance();
 completedProgressRect.width((progress.amount / progress.max) * stage.width());
 incompleteProgressRect.x((progress.amount / progress.max) * stage.width());
 layer.draw();
 console.log(progress.amount);
});

Cost of Changes

• To change the visual layout, also need to change:

• Event handler

• Top-level initialization

• Behavior and view are improperly coupled.

Coupling
• Cost of modifying module A depends on how tightly-coupled it is to other

modules

• Idea: reducing coupling may reduce modification costs

• To reduce coupling:

• Minimze relationships among elements not in the same module

• Maximize relationships among elements in the same module

Cohesion

• Put related responsibilities in the same module

• To maximize modifiability, maximize cohesion & minimize coupling

Need a Plan

• Model-View-Controller is classic (SmallTalk-80)

• Other variants: Model-View-Presenter, Model-ViewController

• Basic principle: separate behavior from model and view

Model-View-Controller (MVC)
• Model: represents the state that might be updated

• In our example: how much progress

• Could be very complicated (in a spreadsheet, this is the document)

• View: translates the model to pixels

• Controller : implements interaction ("business logic")

Classic Model-View-Controller

Model

Controller

View

update
user action

update

fetch state

notify

Let's Refactor

