Model-View-Controller



Separation of Concerns

* [o make a change: must first figure out where to make the change
* What do you need to know!
» Understand the whole system!? Impossible!

» Approach: divide the system into pieces



Responsliollities

* A responsibility Is an action, knowledge to be maintained, or a decision to be

carried out by a software system or an element of that system. [Bachmann, Bass,
Nord]

» Responsibilities are assigned to modules
» But what Is the cost of modifying a responsibility?

» Responsibilities can be coupled: a modification to one can result in a
modification to the other



Diffuse Responsibilities

* [t might be hard to see In a program this small

» But why are calculations for the two sections of the progress bar In the event
handler?

button.on('click', () => {
progress.advance();
completedProgressRect.width((progress.amount / progress.max) * stage.width());

incompleteProgressRect.x((progress.amount / progress.max) *x stage.width());
layer.draw();

console. log(progress.amount) ;

});

« Also redundant with inrtialization



Cost of Changes

» |o change the visual layout, also need to change:
£ Bvent nandler

* |op-level Initialization

* Behavior and view are improperly coupled.



» Cost of modifying module A de

modules

e |dea: rec

Coupling

ucing coupling may rec

§ 10 reduce coupling:

LICE RO

fication costs

bends on how tightly-coupled It Is to other

* Minimze relationships among elements not In the same module

* Maximize relationships among elements In the same Mmoc

ule



Cohesion

» Put related responsibilities in the same module

* [o maximize modifiability, maximize cohesion & minimize coupling



Need a Plan

» Model-View-Controller is classic (Small Talk-80)
« Other variants: Model-View-Presenter, Model-ViewController

» Basic principle: separate behavior from model and view




Model-View-Controller (MVC)

» Model: represents the state that might be updated

* In our example: how much progress

» Could be very complicated (in a spreadsheet, this Is the document)

* View: translates the model to pixels

» Controller: implements interaction ("business logic")




Classic Model-View-Controller

ControHer

update update
user action

Model

notn‘y

View

4—
fetch state




| et's Refactor



