
Event-Driven Systems

Learning Goals

• Be able to explain why architectural patterns are helpful in structuring
software.

• Understand the principles of event-driven systems.

Context

• Software Architecture is about dividing systems into pieces
(components)

• Enables reasoning about components individually

• Consider the alternative

• "Hey, if I change this, will it break YOUR code?"

Architecture Is Big

• Maybe you haven't seen systems big enough to really need it

• But every system has an architecture

• If no one designed it, it's probably not a good one

I Will Train You To See Patterns

• You see circles.

• But are there really
circles here?

Patterns Have Purpose

• This camouflage pattern is
intended to help its wearer
blend into the background

Form Follows Function

• Patterns serve purposes

• We study patterns so you
can achieve goals

https://www.itsnicethat.com/articles/impossible-objects

Innovation

• Before innovating, first know the existing patterns

• Afterward, you can break the rules

• Standard solutions solve common problems

• Innovative solutions solve novel problems

Let's Get Concrete

• In the past, I tried to start by teaching particular patterns

• But the patterns are abstract

• This year, I'm trying something different.

• Let's start with a concrete design problem and try to discover good
patterns.

Interactive Systems

• Perhaps you are accustomed to batch systems:

• Program takes input, runs, generates output, terminates.

• But most software you use is interactive

• You get upset when your web browser exits!

Interactive Systems Respond to Input

state 1 input state 2
input

state 2 input …

Diagram

state

transition

Key

Key • Diagrams communicate designs
• This is a state transition diagram
• Every diagram needs a key

A First Try

• Goal: implement Pac-Man

• Pac-Man is stopped or is moving
⬆⬅➡⬇

• Interaction: pressing arrow keys changes
direction

A First Try
dir = STOP;
state = initialState();
while (!gameOver) {
 state.update(dir); // move one unit in the current direction
 if keyboard.leftArrowDown() {
 dir = LEFT;
 }
 … // more cases and game logic here
}

Analysis

• Simple design (good!)

• As CPU speed increases, game
becomes unplayable

• Old PCs had "turbo" buttons to set
clock speed!

https://commons.wikimedia.org/wiki/File:486er_33MHz_DX2_Double_Speed_Iomega_Tape.jpg

Timing
dir = STOP;
state = initialState();
while(!gameOver) {
 state.update(dir); // move one unit in the current direction
 if keyboard.leftArrowDown() {
 dir = LEFT;
 }
 … // more cases and game logic here
}

What happens if the user presses
the key, but releases it before this
check?

The Alternative: Events

• Wikipedia: "An event is a detectable occurrence or change in state
that the system is designed to monitor, such as user input, hardware
interrupt, system notification, or change in data or conditions."

• Me: An event represents something that happened.

• Examples: mouse down; mouse drag; key press; tap on touchscreen

The Event Loop
void main() {
 state = initialState();
 startStateUpdateThread(state);
 while (event = getNextEvent()) {
 handleEvent(event);
 }
}
void handleEvent(Event e) {
 switch (e.kind) {
 case KEYBOARD.LEFT:
 setDirection(LEFT);
 …
}

•All interaction happens in the
event loop

•Time-based updates happen in
another thread

•Code that implements interaction
is isolated in handleEvent
(doesn't pollute main)

A Real Example: MacPaint (1984)
BEGIN { main program }
 InitGraf(@thePort);
 …
 OpenFirstDoc;

 REPEAT
 …
 IF GetNextEvent(everyEvent,theEvent) THEN ProcessTheEvent;

 …

 IF quitFlag THEN QuitProgram;

 UNTIL quitFlag;
 ExitToShell;
END.

© 1984 Apple Inc. https://computerhistory.org/blog/macpaint-and-quickdraw-source-code/

MacPaint (Simplified)
PROCEDURE ProcessTheEvent;
BEGIN
 shiftFlag := (BitAnd(theEvent.modifiers,shiftKey) <> 0);
 CASE theEvent.what OF …
 mouseDown:
 BEGIN
 code := FindWindow(theEvent.where,whichWindow);

 IF (theEvent.when < clickTime + GetDoubleTime)
 AND NearPt(theEvent.where,clickLoc,4)
 THEN clickCount := clickCount + 1
 ELSE clickCount := 1;
 CASE code OF
 inSysWindow: SystemClick(theEvent,whichWindow);

 inMenuBar:
 BEGIN
 CheckMenus; { enable or disable items }
 CursorNormal;
 menuResult := MenuSelect(theEvent.where);
 inContent,inGrow:

•If it's a mouseDown, was it a
double click?

•If it was in the menu bar, make
the menus go

•If it was in the window, handle
that…

Modern Event Loops

• You won't be managing so much
manually (applications don't
have to re-implement double
clicks or menu bars anymore)

• Swift (at right) uses event loops

• As do every other modern
interactive framework

Programming With Events

• You will be building an interactive application, so you will need to
handle events!

• Usually you won't see the event loop directly

• Instead, you implement event handlers

• To receive events, register those handlers with a dispatcher.

Konva

• Konva is a TypeScript framework for 2D canvases.

• You can draw stuff and get events.

• This should be enough to get you off the ground!

But First, the Basics

• A Scene consists of Layers

• Each Layer includes Shapes

• Shapes can be put in Groups

• e.g. so you can rotate them together

Konva Demo

Next: a Stepper
• Goal: every time the user clicks a button, show progress.

• Start at 0%. Ten clicks represents 100%.

• As we make progress, be critical of the design.

• We're going to make a bit of a mess.

• We'll clean this up next time.

Our Mess
• We have two things all mixed up:

• View logic (how to draw the bar)

• Behavior (interaction: what happens when)

• At least we have the model separated.

• Next time: Model-View-Controller

