cvent-Driven Systems

L earning Goals

» Be able to explain why architectural patterns are helpful in structuring

software.

» Understand the principles of event-driven systems.

Context

» Software Architecture Is about dividing systems Into pieces
(components)

* Enables reasoning about components individually

« Consider the alternative

» "Hey, If | change this, will it break YOUR code!"

Architecture Is Big

» Maybe you haven't seen systems big enough to really need it
» But every system has an architecture

» [T no one designed It, it's probably not a good one

THE LIFE OF A SOFTWARE MUCH LATER...
ENGINEER. .

OH MY. T1’VE
DONE IT AGAIN,
HAVEN'T T 7

CLEAN) SLATE. SoLiD
FoUNDATIONS. THIS TIME
T WillL BuUILD THINGS THE

| Wil Train You To See Patterns

* YOU see circles.

f Bl dre there really
filCies here!

Patterns Have Purpose

» [his camoutlage pattern is
iNntended to help 1ts wearer
blend Into the background

Form Follows Function

» Patterns serve purposes

* We study patterns so you
can achieve goals

https://www.itsnicethat.com/articles/impossible-objects

'INnnovation

Before innovating, first know the existing patterns

Afterward, you can break the rules

Standard solutions solve common problems

Innovative solutions solve novel problems

| et's Get Concrete

* In the past, | tried to start by teaching particular patterns
» But the patterns are abstract
» [his year, I'm trying something different.

» Let's start with a concrete design problem and try to discover good
patterns.

Interactive Systems

* Perhaps you are accustomed to batch systems:

* Program takes input, runs, generates output, terminates.

» But most software you use Is interactive

* You get upset when your web browser exits!

Interactive Systems Respond to Input

state |

Key i+ Diagrams communicate designs
:» This is a state transition diagram
i+ Every diagram needs a key

B asiion

A First Iry

g Lhoal implement Pac-Man

» Pac-Man Is stopped or Is moving

"o Yo Yo Yammm

* Interaction: pressing arrow keys changes

direction

A First [ry

gir = STOP;
state = initialState();
while (!gameOver) {
state.update(dir); // move one unit in the current direction
if keyboard.leftArrowDown() <
iy = |LFFT;
}

.. // more cases and game logic here

Analysis

» SImple design (good!)

f " L P speed Increases, game
becomes unplayable

B (s had turbo’ buttons to set
clock speed

https://commons.wikimedia.org/wiki/File:486er_33MHz_DX2_Double_Speed_lomega_ Tape.jpg

1iming

gir = STOP;
state = initialState();
while(!gameOver) A
state update(dir); // move one unit in the current direction

: 1f keyboa rd. leftArrowDown() YN \Vhat happens If the user presses
llllllllllllllllll :Illllllllllllllllll _the key bu_t re‘eases l_t before thlS

check!?

. // more cases and game Llogic here

1 he Alternative: Events

F viKiDedia: An event Is a detectable occurrence or change In Stats
that the system Is designed to monitor, such as user Input, hardware
interrupt, system notification, or change In data or conditions.”

» Me: An event represents something that happened.

* Examples: mouse down; mouse drag; key press; tap on touchscreen

ifebventians

void main() 1
state = initialState(): * All Interaction happens In the

event loop

startStateUpdateThread(state)

L G o @ B BL B MR Bd pR R IIIIIIIIIIIIIIIIJIIII‘

Ewhile {iene - getNextEvent()) { | * Time-based updates happen in

E } handleEvent(event): E another thread

}.ll.ll.ll.lllll.ll.lllllllllllll’ .COde-tha-t imp‘ements in-terac-tion

void handleEvent(Event e) { s isolated in hand LeEvent
switch (e.kind) { (doesn't pollute main)

case KEYBOARD.LEFT:
setDirection(LEFT):

A Real Example: MacPaint (19384)

BEGIN 1 main program }
InitGraf(@thePort);

OpenFirstDoc;
REPEAT

IF GetNextEvent(everyEvent,theEvent) THEN ProcessTheEvent;

IF quitFlag THEN QuitProgram;

UNTIL quitFlag;
ExitToShell;
END.

© 1984 Apple Inc. https://computerhistory.org/blog/macpaint-and-quickdraw-source-code/

MacPaint (Simplitied)

PROCEDURE ProcessTheEvent;

BEGIN
shiftFlag := (BitAnd(theEvent.modifiers,shiftKey) <> 0);
mouseDown: |
BEGIN double click?
code := FindWindow(theEvent.where,whichWindow);

|f It was In the menu bar, make
IF (theEvent.when < clickTime + GetDoubleTime)
AND NearPt(theEvent.where,clickLoc,4)
THEN clickCount := clickCount + 1 : : :
B i *[f It was In the window, handle

CASE code OF that
inSysWindow: SystemClick(theEvent,whichWindow);

the menus go

inMenuBar:
BEGIN
CheckMenus; { enable or disable items }
CursorNormal;
menuResult := MenuSelect(theEvent.where):

inContent, 1nGrow:

Moaern Event Loops

Foundation / RunLoop

Class

RunLoop

The programmatic interface to objects that manage input sources.

manua‘ ‘>/ <app‘ |Ca't|or]s don "t 105 2.0+ | iPadOS 2.0+ | Mac Catalyst 13.0+ | macOS 10.0+ | tvOS 9.0+ | visionOS 1.0+ | watchOS 2.0+

* YOou won't be managing so much

have to re-implement double

clicks or menu bars anymore)
Mentioned in

3 Processing URL session data task results with Combine

» Swift (at right) uses event loops

Overview

A RunlLoop object processes input for sources, such as mouse and keyboard events from the window system and Port
objects. A RunLoop object also processes Timer events.

£ s do every other modern

Your application neither creates nor explicitly manages RunLoop objects. The system creates a RunLoop object as
needed for each Thread object, including the application’s main thread. If you need to access the current thread's run

i ﬂte raC-thG fram eWO H(loop, use the class method current.

Note that from the perspective of RunLoop, Timer objects aren't “input”—they're a special type, and they don’t cause
the run loop to return when they fire.

Programming VWith tvents

* You will be building an interactive application, so you will need to

handle events!

» Usually you won't see the event loop directly

* |nstead, you implement event handlers

» |o receive events, register those handlers with a dispatcher:

<onva

» Konva Is a lypeScript framework for 2D canvases.

* You can draw stuff and get events.

» [his should be enough to get you oft the ground!

But First, the Basics

« A Scene consists of Layers

« Fach Layer Includes Shapes

§ Siapes can be put In Groups

= S0 yoU can rotate them together

<onva Demo

Next a Steppe

+ Goal: every time the user clicks a button, show progress.
» Start at 0%. Ien clicks represents |00%.

* As we make progress, be critical of the design.

* We're going to make a bit of a mess.

B el clean this up next time.

Our Mess

* We have two things all mixed up:

* View logic (how to draw the bar)

» Behavior (Interaction: what ha

» At least we have the model separated.

D)

bens when)

« Next time: Model-View-Controller

