
CSE 110 – Software Engineering

Instructor: Professor Michael Coblenz
mcoblenz@ucsd.edu

Why Software Engineering?

Have You Ever…
• Submitted a project late or with bugs that you couldn't fix in time?

• …bugs that you didn't know about before submitting?

• Written code that was too hard to debug or maintain, and
wanted to toss it out the window at the end of the project?

• Wondered how people work on the same program for years without
making a mess?

Building Great Software Is Hard

2/3 of projects are late [Tata]

1/4 of all projects are canceled [Standish]

1/2 run over budget [Tata, SGR CACM]

http://www.galorath.com/wp/software-project-failure-costs-billions-better-estimation-planning-can-help.php

Allstate insurance planned a 5-
year, $8M project. Six years later

they replanned for $100M.

HealthCare.gov

• Demand (5x expected) took site down within 2 hrs. of launch

• Site incomplete (menus missing options, incomplete data transmitted to insurance
companies)

• 6 users bought insurance the first day
https://d3.harvard.edu/platform-rctom/submission/the-failed-launch-of-www-healthcare-gov/

Healthcare.Gov Failure Causes

• HHS staff lacked experience launching technology products

• Failure to divide responsibilities appropriately

• Schedule pressure: launched before ready

https://d3.harvard.edu/platform-rctom/submission/the-failed-launch-of-www-healthcare-gov/

http://healthcare.gov

737 MAX

• To avoid cost of a major redesign, Boeing took shortcuts in aerodynamic design
of 737 MAX

• Software was updated to compensate for side effects

• Software was not robust to angle of attack sensor failures (single point of failure)

• Pilots were insufficiently trained on failure modes

• Result: 346 deaths
https://spectrum.ieee.org/how-the-boeing-737-max-disaster-looks-to-a-software-developer

Why the Disasters? Scale.

Gibbs, Software’s Chronic Crisis, Sci. Am., Sept. 1994

Users want more and more features

CREWED

Why the Disasters?
 Misunderstood and Changing Requirements

Steve McConnell, Software Quality at Top Speed,
Software Development, August 1996

“…reworking a software requirements
problem once the software is in operation
typically costs 50 to 200 times what it would
take to rework the problem in the
requirements stage… A 1-sentence
requirement can expand into…500 lines of
code…and a few dozen test cases.”

Quality Control: a Short History
Quality control in early manufacturing was
Product-Centric (“what”)
• Regularly test product outputs
• Make adjustments to factory as needed
• But what to fix?

mid-20th c., shift to Process-Centric (“how”)
• Still test product outputs
• Also measure process elements

• plans, people, tools, product-in-progress
• Use cause-and-effect model to adjust factory
• Statistics to precisely track variation
• Buzzword: Statistical Process Control

• SE has inherited this legacy
• SE methods are process-centric

What’s a Software Process?
How to produce quality software

• What: what customer wants, on time, under budget, free of flaws

Steps include:

• Planning

• Execution

• Measurement

• Product, and process itself

• Examples: bugs, progress, time, feature acceptance by customer

Technical Themes of the Course
• Scale

• All of computer science, especially CS research, is about managing scale.
So is SE.

• Risk, Uncertainty

• SE is all about managing risk.

• Goal: increase upside risk (great products), decrease downside risks (late,
buggy, etc.)

Beyond Process
• Process is just the beginning

• Software engineering is about quality decision-making

• Good architecture

• Teamwork

• Good design

• Thorough quality assurance

• This course is about all of these things.

Secrets (To Be Revealed)
• Q: How do you build what is needed, and not just what you think is needed?

• A: Iteration with frequent feedback from users.

• Q: When I change code, I almost always break something else. How do I avoid doing that?

• A: Good design and architecture.

• Q: How do I make my software useful for speakers of other languages? And protect my
users' data? And behave ethically? And build a team?

• A: Keep coming to class.

This course will be different
from every other course you've ever taken!

Most Courses You've Taken Probably…

• Tell you what to build, prove, or write

• If you build, prove, or write that, then you get an A.

• Expect correct answers

• These courses are great for teaching you how to build, prove, or
wrote those kinds of things.

Most Courses You've Taken Probably…

• Focus on individual work

• Or, if there are groups, each group creates an artifact

• and everyone is graded according to the artifact's quality

In This Course…

• You will decide what to create.

• If you learn key principles, work hard, and make wise choices, you will
get an A.

• Often there will be multiple good answers (and you can get an A for
any of them if you justify your choice well).

In This Course…

• Teamwork will be central to your success

• But not everyone on the team will get the same grade

• because each member will be graded on their contributions

In Most Project Courses
• More is better

• More features

• Better performance

• More documentation

• Longer, more detailed report

In This Course

• Wisdom is better

A Dilemma (On a Solo Project)

• You promised users you will deliver your software (a turboencabulator) in two
days.

• Most of it works, but you have been debugging the hydrocoptic marzlevanes for
a day now. There's no telling how long it'll take, but it could be 2-3 days more.

• There are assorted other bugs.

• Now what?

What Do?
A. Work very late, try to finish everything and fix the bugs

B. Ask VP (nicely) to assign more resources (another engineer)

C. Fix bugs first and see whether there's time left for the hydrocoptic
marzlevanes

D. Cut hydrocoptic marzlevanes; focus on quality

E. Something else

Goals of the Course

• Work effectively in a team that uses an Agile development process
• Design and document software systems according to stakeholder

needs
• Implement and debug complex software systems
• Bottom line: able to think in terms of tradeoffs and risks

About Me

• Research: making software engineers more effective, mostly via better
programming languages

• Recent work: REST API design; Rust language; programming for
scientists; debugging research

• Previously: Senior Software Engineer at Apple (eight years)

TAs

• Tony Li: PhD student, five years of professional software experience
(e.g., Facebook)

• Ria Dharmani: MS student, two years at Amazon + Microsoft

• Jash Makhija: MS student, TAd 110 3x before, internships at JP Morgan,
ASUS, etc.

Tutors

• Boyu Tian

• Can Yavuz

• Jonathan Zhang

• All have substantial internship experience, including with the tech
stack you'll be using

About Class

• Discussion is an integral part of class!

• Research has shown that active learning is superior

• BE HERE at 4 PM

Changes

• This is my first time teaching CSE 110!

• I have made significant changes compared to other quarters.

• Expect changes.

• Assignments may appear or disappear; grade weights may change a little.

• Policies may need to be adjusted.

Health
• Your health comes first

• Do not come to class sick

• You can catch up on the podcast later

• Masking is currently optional

• Reminder: new COVID vaccine is available (+ flu vaccine)

A Dual Agenda
• Course design choice: learn technologies or principles?

• But: learning principles is best done in context

• Lecture will focus on principles

• Labs will focus on technologies

• Discussions will include very important group activities (see calendar)

• Also: exam review and extended discussion

Grading
• Individual assignments: 25%

• Team project: 23% (everyone gets the same grade)

• Personal contributions to team success: 18%

• Labs: 4%

• Midterm: 10%

• Final: 20%

Team Project Details

• You will choose your own requirements!

• Every project will be different

• Your team will be assigned a TA, who will help you manage your project

• We will grade you according to ongoing quality and progress

• not on final quality

Example

• Sam's team's project has been going great.

• In Week 6, the team realizes that the plan to use services from spurving.com was a bad one:
not enough documentation, too many bugs, nowhere to get help. They replace it with
grammeters.com, but this delays the project a week. They re-prioritize, dropping a key feature.

• In Week 7, three team members catch COVID and are out for a week.

• The team meets in Week 8 and cuts two features that key stakeholders had requested.

• The team demos successfully in Week 10 — without those features.

http://spurving.com

Assessment
• The project still meets the most critical user needs.

• The team made wise decisions, re-scoping the project as needed.

• The three team members who got sick don't contribute much that
week, but since we drop the lowest week's contribution scores, it
doesn't matter.

• Perhaps everyone gets an A.

Another Example
• Sam's team's project has been going great.

• In Week 6, the team runs into trouble: components relying on spurving.com aren't working.

• But spurving.com is very popular and must be great. Sam starts working very late.

• Week 7: three team members catch COVID and are out for a week.

• Week 8: not much works yet (ongoing trouble with spurving.com). Sam's not getting enough sleep to work
effectively.

• Week 9: team members double down on their commitment to ship all their features — gotta keep the users happy.
Sam skips doing homework for other classes to deliver the project.

• Week 10: demo goes poorly. The features are all "there" but each one exhibits serious bugs.

http://spurving.com
http://spurving.com
http://spurving.com

Assessment

• The team didn't reconsider their strategy after missing deadlines due to
issues with spurving.com.

• The team didn't drop features despite resource constraints (three people
sick), committing them to either poor quality or an unacceptable workload.

• Features don't help if they don't work or are unpolished.

• Team grade: not an A.

Aside

• A worse scenario

• Three team members catch COVID

• To avoid impacting the team, they continue working hard and
coming to team meetings

• Now everyone has COVID and no one is getting work done.

Personal Contributions to Team Success
• You will submit peer feedback (strengths, weaknesses) each week

• Then, TAs will give you in three areas each week:

• Independence

• Teamwork

• Technical contributions

Teamwork
• Teamwork may be the hardest part of the class

• Team skills are a learning goal

• I, TAs, and tutors are available to help!

• Raise issues with each other and staff before they become serious, if possible

• Note: instructor and TAs are "responsible employees"

• Please tell us about incidents of harassment, but know that we must report unlawful
discrimination and harassment to OPHD

Project

• Being a student is stressful!

• Create something to help some UCSD students with stress.

• We will match you with about 6-8 students based on your interests,
availability, and experience. Survey is out now (due Monday).

Key Project Steps
• You'll match with a team next week (even if you are on the wait list)

• Focus groups will provide insight regarding what users want

• A vision document will say what you plan to create

• A mockup will show the application in detail

• In five sprints, you will build your app.

Team Project
Component Weight

Topic + requirements questions for focus groups 2%
Vision document 4%
Revised vision document 4%
Mockups 4%
Sprint 1 quality and progress 2%
Sprint 2 quality and progress 2%
Sprint 3 quality and progress 2%
Sprint 4 quality and progress 2%
Sprint 5 quality and progress 2%
Project demo video 1%

One More Thing…

• You wouldn't want to miss a final exam question, would you?

• You can buy insurance against this unfortunate event.

• Suppose you bomb a question about topic X. Oops.

• If you answered all the insurance clicker questions in the lecture on
topic X correctly, you get 50% on the question!

Insurance
• Points are pro-rated according to the fraction of questions you got right (50%

right gets you a 25% score on the question)

• Insurance applies to partial credit (if you earn 50% partial credit but have full
insurance, you get 75%)

• If you miss class (up to twice, no explanation needed):

• Watch the podcast; email me an explanation of how the material impacts
your project. I will give credit if I am convinced you learned the material.

Insurance
• This is an EXPERIMENT

• If I catch a whiff of insufficient academic integrity, or there are negative impacts on the course,
I will stop the whole scheme.

• Insurance questions will be marked with

• No insurance offered today

• You have to trust me to be reasonable about mapping lectures to exam questions

• Insurance is ONLY for the final exam, not the midterm

Practice Question

Which best characterizes what you should do to maximize your grade
in this course?

A. Grind hard, work late.

B. Make very complex apps that showcase your brilliance.

C. Make wise choices, manage risk, and work effectively with your team.

Practice only!

Questions About the Course?

What Do You Want To Learn?

